Genetically Manipulating Protein Expression to Probe 3D Cell Behavior using Ultrasound-Responsive Biomaterials
使用超声响应生物材料对蛋白质表达进行基因操作以探测 3D 细胞行为
基本信息
- 批准号:10712639
- 负责人:
- 金额:$ 38.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectBiocompatible MaterialsBiologicalBiological ProcessCell CommunicationCell Culture TechniquesCell physiologyCellsCellular StructuresChemotaxisClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCommunicationComplexDNA deliveryDiseaseDisease modelEndothelial CellsEndotheliumFocused UltrasoundGene ExpressionGenesGrowth FactorIndividualKnock-outLibrariesLocationMediatingMethodsNatural regenerationNucleic AcidsPatternProcessProtein SecretionProteinsRegulationResearchResearch PersonnelRoleSocietiesSystemTestingTimeTissuesTransfectionVascularizationVisionWorkbioscaffoldcell behaviorcell motilitycell typegenetic manipulationinnovationinsightintercellular communicationmigrationnovel therapeutic interventionoverexpressionparticleprogramsprotein expressionregenerative therapyscaffoldspatiotemporalthree dimensional cell culturetissue repairultrasoundwound healing
项目摘要
Project Summary
Controlled presentation of proteins in time and space is essential for the coordination of biological processes in
both healthy and diseased tissue. There is a significant need to recreate and manipulate these complex dynamic
processes within 3D scaffolds to better understand their biological roles and inform regenerative therapies.
Inducing gene expression and gene editing at specific times and locations within 3D scaffolds will enable
researchers to control protein expression necessary to study basic mechanisms of cell behavior and influence
cell interactions. However, it remains a challenge to genetically manipulate cells within 3D scaffolds
noninvasively with spatial and temporal control. Further, few methods allow individual coordination of multiple
genetic manipulations within a material, rendering it difficult to replicate the complex processes observed in
tissue maturation, vascularization and wound healing. To address these challenges, my lab is developing a new
class of biomaterials, called SonoScaffolds, for controlled, ultrasound-mediated genetic manipulation of cells in
3D culture. Our overall vision is to leverage these new 3D biomaterials to study cell behavior, model disease
states and facilitate tissue repair. In our innovative approach, focused ultrasound interacts with integrated
echogenic particles within the biomaterials to locally deliver nucleic acids to cells to manipulate their protein
expression and secretion. The focused ultrasound can create user-defined 3D patterns of transfection at
controlled times. We will use this platform to address key questions regarding how spatial presentation and
timing of protein expression affects cellular behaviors in 3D, such as directed migration and chemotaxis. To
achieve this, my research program will devise ultrasound-mediated strategies to enable two essential capabilities
for genetic manipulation in scaffolds: spatiotemporal control of gene overexpression, and precise control over
CRISPR-based gene editing. A second theme of my program will generate a library of scaffold-integrated
echogenic particles that each respond to distinct ultrasound parameters thereby enabling multiplexed DNA
delivery with spatiotemporal control. While our approach is versatile and cell-type agnostic, we will first test the
SonoScaffold platform in an endothelial co-culture system for manipulation of intercellular communication in
ultrasound-defined patterns. We will use this system to facilitate guidance of endothelial cell migration for the
study of chemotaxis. This will include ultrasound-mediated expression and CRISPR knockout of multiple growth
factors both individually and in combination, providing insight into how individual factors coordinate 3D cell
behavior. Together, this work will generate a transformative new class of 3D-programmable cell culture materials
that enable noninvasive, spatiotemporally-defined genetic manipulation of embedded cells and multicellular
structures, and provide new insights into coordinated cell processes. This program will have immediate benefits
to society, enabling new and innovative studies into regulation of cell behavior by genetically manipulating cell
processes in the 3D context to advance our understanding and inform new therapeutic strategies.
项目概要
蛋白质在时间和空间上的受控表达对于生物过程的协调至关重要
健康组织和患病组织。非常需要重新创建和操纵这些复杂的动态
3D 支架内的过程,以更好地了解其生物学作用并为再生疗法提供信息。
在 3D 支架内的特定时间和位置诱导基因表达和基因编辑将能够
研究人员控制研究细胞行为和影响的基本机制所必需的蛋白质表达
细胞相互作用。然而,在 3D 支架内对细胞进行基因操作仍然是一个挑战
具有空间和时间控制的非侵入性。此外,很少有方法允许多个个体的单独协调
材料内的基因操作,使得很难复制在材料中观察到的复杂过程
组织成熟、血管化和伤口愈合。为了应对这些挑战,我的实验室正在开发一种新的
一类生物材料,称为 SonoScaffolds,用于受控、超声介导的细胞遗传操作
3D文化。我们的总体愿景是利用这些新的 3D 生物材料来研究细胞行为、疾病模型
状态并促进组织修复。在我们的创新方法中,聚焦超声波与集成的相互作用
生物材料内的回声颗粒将核酸局部递送至细胞以操纵其蛋白质
表达和分泌。聚焦超声可以创建用户定义的 3D 转染模式
受控时间。我们将使用这个平台来解决有关如何空间呈现和
蛋白质表达的时间会影响 3D 中的细胞行为,例如定向迁移和趋化性。到
为了实现这一目标,我的研究计划将设计超声波介导的策略来实现两项基本功能
用于支架中的基因操作:基因过表达的时空控制,以及基因过表达的精确控制
基于 CRISPR 的基因编辑。我的程序的第二个主题将生成一个集成脚手架的库
回声粒子各自响应不同的超声参数,从而实现多重 DNA
时空控制的交付。虽然我们的方法是通用的并且与细胞类型无关,但我们将首先测试
内皮共培养系统中的 SonoScaffold 平台用于操纵细胞间通讯
超声波定义的模式。我们将使用该系统来促进内皮细胞迁移的指导
趋化性的研究。这将包括超声介导的表达和多重生长的 CRISPR 敲除
单独和组合因素,深入了解各个因素如何协调 3D 细胞
行为。总之,这项工作将产生一种革命性的新型 3D 可编程细胞培养材料
能够对嵌入细胞和多细胞进行非侵入性、时空定义的遗传操作
结构,并为协调细胞过程提供新的见解。该计划将带来立竿见影的好处
为社会带来通过基因操纵细胞来调节细胞行为的新的和创新的研究
3D 背景下的过程,以增进我们的理解并为新的治疗策略提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Schutt Ibsen其他文献
Carolyn Schutt Ibsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 38.31万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 38.31万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 38.31万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 38.31万 - 项目类别: