Determinants underlying horizontal gene transfer-mediated pathogen success
水平基因转移介导的病原体成功的决定因素
基本信息
- 批准号:10713094
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibiotic ResistanceAntibiotic TherapyBioinformaticsBioremediationsCellsClinicalCommunicable DiseasesComputer ModelsDistantEnvironmentEnvironmental Risk FactorEpidemiologic MonitoringEventEvolutionGene TransferGeneticGenetic MaterialsGeographyGoalsHealthHorizontal Gene TransferHumanIn SituIndividualIndustrializationMediatingMetabolicMethodsMinorityMissionMolecularMulti-Drug ResistanceNational Institute of General Medical SciencesPartner in relationshipPathogenesisPlasmidsPopulationPrevalenceProcessResearchTimeVirulenceWorkclinically relevantcostdriving forceemerging pathogenexperimental studyfitnesshigh riskinsightmicrobialmicrobiome researchnovelpathogenprogramsresistance genesuccesstraittreatment strategy
项目摘要
Project Summary
Horizontal gene transfer (HGT), specifically plasmid conjugation, is a driving force in microbial evolution
and pathogenesis. The process of conjugation appears deceptively simple: a donor cell transfers a copy
of a plasmid to a compatible recipient cell through a physical mating bridge. In doing so, diverse traits,
such as metabolic, virulence, and antibiotic resistance genes, can be spread. As such, HGT has been
implicated in a variety of human health and industrial applications, ranging from multi-drug resistance to
bioremediation. Advances in microbiome studies have revealed that HGT occurs between both closely
and distantly related strains, yielding a wide diversity of potential strain/plasmid combinations; despite
this, epidemiological surveillance clearly demonstrates that only a small minority of clones and their
associated plasmids persist in situ and are highly conserved across different ecological, geographical,
and clinical contexts. Thus, it is widely believed that the overall fitness of individual strain-plasmid pairs
is a key feature of successful pathogens. Fundamentally, this success is driven by a dynamic interaction
between a plasmid-carrying donor and suitable recipient strain in a favorable environment, resulting in
the formation of new strain-plasmid pairs (e.g., transconjugants). However, research to date has primarily
focused on established strain-plasmid combinations (e.g., donor capabilities and/or plasmid fitness
costs); in contrast, the dynamics and factors favoring the initial formation of these combinations
are entirely unknown. Yet, such information is critical to both predict new pathogen emergence and
develop strategies that intervene in plasmid acquisition before they become established in a population.
To address this gap, my research program leverages our unique interdisciplinary expertise in
computational modeling, bioinformatics, and mechanistic experiments to investigate the molecular
factors favoring the formation of new strain-plasmid combinations. Our proposed themes approach this
problem from three complementary perspectives: (1) What genetic features make certain plasmids
harder/easier to acquire? (2) What determines a strain’s potential to act as a good HGT recipient? (3)
How does environmental selection impact plasmid acquisition capabilities? Combined, these parallel
objectives work towards a unified framework that integrates insights across multiple levels of complexity
(i.e., molecular to ecological/evolutionary). These research directions contribute to our long-term goal,
one that is central to the NIGMS mission, of reliably predicting (and ultimately controlling) clinically
relevant strain/plasmid prevalence, and will eventually enable us to anticipate pathogen emergence a
priori and explore downstream applications, e.g., novel antibiotic treatment strategies.
项目概要
水平基因转移(HGT),特别是质粒结合,是微生物进化的驱动力
和发病机理。
通过物理交配桥的质粒到兼容的受体细胞。
诸如代谢,毒力和抗生素耐药性基因可以传播。
与各种人类健康和工业应用有关,从多药抵抗到
生物修复。
远距离菌株,尽管有多种潜在的应变/质粒组合
这个流行病学监测清楚地表明,只有少数克隆及其
相关的质粒原地持续存在,并且在不同的生态,地理位置上是高度保守的
和临床环境。
是成功的病原体的关键特征。
在有利的环境中,在质粒的供体和合适的受体应变之间,导致
新的应变质量对的形成(例如,跨结合者)。
专注于已建立的应变质粒组合(例如,供体能力和/或质粒适应性
成本);相比之下,有利于初始组合的动态
完全未知。
制定策略在建立质粒之前干预质粒的策略成为人群。
为了解决这一差距,我的研究计划利用了我们独特的跨学科专业知识
计算建模,生物信息学和机械实验,以研究分子
有利于形成新的应变质量组合的因素。
从三个互补角度来看:(1)哪些遗传特征使某些质粒
更难/更容易获取?
环境选择如何影响质粒的获取能力?
目标朝着一个统一的框架,该框架整合了跨多个复杂性的洞察力
(即分子到生态/进化)。
这是NIGMS任务的核心,可靠地预测(并最终控制)临床
相关菌株/质粒患病率,最终将使我们能够预期病原体出现
先验和探索下游应用,例如新型的抗生素治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison Lopatkin其他文献
Allison Lopatkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allison Lopatkin', 18)}}的其他基金
Establishing a mechanistic basis for the plasmid acquisition cost
建立质粒获取成本的机制基础
- 批准号:
10291392 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
消毒剂-抗生素循环压力下鲍曼不动杆菌耐药性演变及其作用机制
- 批准号:82273586
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
- 批准号:
10662098 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
A comprehensive investigation of Pseudomonas quorum sensing regulatory relationships and the consequences on quorum sensing inhibitors in complex communities
复杂群落中假单胞菌群体感应调控关系及其对群体感应抑制剂影响的全面研究
- 批准号:
10716869 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别: