Bacterial and Viral Predator-Prey Dynamics within Bacterial Biofilms at Cellular Resolution
细胞分辨率下细菌生物膜内的细菌和病毒捕食者-猎物动力学
基本信息
- 批准号:10712062
- 负责人:
- 金额:$ 40.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-13 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAntibioticsArchitectureAttentionBacteriaBacterial GenomeBacterial InfectionsBacteriophagesBdellovibrioBindingBiological ModelsCell CommunicationCell surfaceCellsChitinCholeraChronicClinicalCommunitiesComplexConsumptionEnvironmentEscherichia coliExcisionGenomeGlassGrowthImageInfectionLeadLiquid substanceLyticMechanicsMicrobial BiofilmsNatureNutrientOperative Surgical ProceduresPathogenesisPredispositionResearchResolutionRoleShrimpStructureSurfaceSystemTestingVibrioVibrio choleraeVibrio parahaemolyticusViralVirulenceVirusWorkacute infectionantimicrobialbacterial fitnesschronic infectionfightingfrontierhost microbiotahuman diseaseinsightlife historymarinenovelnovel strategiesparticlepathogenpolymicrobial biofilm
项目摘要
PROJECT SUMMARY
The Nadell lab studies the spatial mechanics and community dynamics of bacterial biofilms, using Vibrio
cholerae, V. parahaemolyticus, Escherichia coli, and their respective bacterial and viral predators as model
systems. While some marine Vibrio species cause human disease, with cholera being the most historically
important, my lab does not study virulence mechanisms or bacterial pathogenesis. Rather, we use these species
to understand the architectural and community dynamics of live biofilms at cellular resolution. Most bacteria
produce surface-bound biofilm communities in nature, but we have strikingly little understanding of how cell-cell
interactions lead to their higher order composition, architecture, and community dynamics. Since biofilm structure
and composition can contribute to their role in acute and chronic infection, understanding the mechanisms
controlling their structure and composition, and in particular how predatory viruses and bacteria attack biofilm-
dwelling cells, may lead to novel approaches to fight clinical infections. Over the next five years we will focus on
two major frontiers that have received minimal attention using cellular resolution imaging in the biofilm field thus
far. First, no work thus far has examined how temperate phages interact with biofilms at high resolution;
temperate phages can amplify and kill susceptible bacteria, but they can also integrate into the bacterial genome
and amplify passively along with the host bacterial cell. This phage life history is widely important in nature and
in host microbiota, and indeed often affects bacterial virulence. We will study in detail where and when within
biofilms these temperate phages infect and kill target bacteria, and where they integrate into the host genome.
Further, we will rigorously compare the propagation dynamics of temperate phages and lytic phages within
biofilms to understand how these fundamentally distinct life history strategies influence phage and bacterial
fitness in realistic environments. Second, the vast majority of high-resolution biofilm research has focused on
biofilms grown on glass under flow of nutrient media. Many realistic environments, including those of marine
Vibrio bacteria, are not this simple, with biofilms growing on topographically complex substrates, and with
nutrients derived directly from the underlying surface rather than the surrounding liquid media. We will explore
the consequences of these complex topographical environments by cultivating multispecies biofilms of V.
cholerae and V. parahaemolyticus growing on and consuming particles of shrimp shell chitin. This system will
permit us to study how growth in a multispecies context on naturalistic substrates influences community
architecture and dynamics. Lastly, we will rigorously test how the realistic chitin environment influences the ability
of a ubiquitous bacterial predator, Bdellovibrio bacteriovorus, is able to attack and kill Vibrio prey within single
and multispecies biofilms. Our research will expand along two important new frontiers, both of which will yield
insight into how predatory viral and bacterial species kill prey bacteria dwelling in otherwise protected biofilms.
项目概要
纳德尔实验室利用弧菌研究细菌生物膜的空间力学和群落动态
霍乱弧菌、副溶血弧菌、大肠杆菌及其各自的细菌和病毒捕食者作为模型
系统。虽然一些海洋弧菌会引起人类疾病,其中霍乱是历史上最严重的弧菌
重要的是,我的实验室不研究毒力机制或细菌发病机制。相反,我们使用这些物种
以细胞分辨率了解活生物膜的结构和群落动态。大多数细菌
在自然界中产生表面结合的生物膜群落,但我们对细胞与细胞如何
相互作用导致了它们的更高阶的组成、架构和社区动态。由于生物膜结构
和成分有助于了解它们在急性和慢性感染中的作用,了解其机制
控制它们的结构和组成,特别是捕食性病毒和细菌如何攻击生物膜
居住细胞,可能会带来对抗临床感染的新方法。未来五年我们将重点关注
因此,在生物膜领域使用细胞分辨率成像的两个主要前沿领域受到的关注最少
远的。首先,迄今为止还没有任何工作以高分辨率研究温带噬菌体如何与生物膜相互作用;
温带噬菌体可以扩增并杀死敏感细菌,但它们也可以整合到细菌基因组中
并与宿主细菌细胞一起被动扩增。这种噬菌体的生活史在自然界中非常重要,并且
在宿主微生物群中,并且确实经常影响细菌的毒力。我们将详细研究何时何地
这些温带噬菌体形成生物膜,感染并杀死目标细菌,并将其整合到宿主基因组中。
此外,我们将严格比较温带噬菌体和裂解噬菌体的繁殖动力学
生物膜来了解这些根本不同的生活史策略如何影响噬菌体和细菌
在现实环境中健身。其次,绝大多数高分辨率生物膜研究都集中在
在营养培养基流动下在玻璃上生长的生物膜。许多现实环境,包括海洋环境
弧菌并不是这么简单,其生物膜生长在地形复杂的基质上,并且具有
营养物质直接来自下表面而不是周围的液体介质。我们将探索
通过培养 V 的多物种生物膜来研究这些复杂地形环境的后果。
霍乱弧菌和副溶血弧菌在虾壳几丁质颗粒上生长并消耗它们。该系统将
允许我们研究自然基质上多物种背景下的生长如何影响群落
建筑和动力学。最后,我们将严格测试现实的甲壳素环境如何影响能力
普遍存在的细菌捕食者噬菌蛭弧菌能够在单一时间内攻击并杀死弧菌猎物
和多物种生物膜。我们的研究将沿着两个重要的新领域扩展,这两个领域都将产生
深入了解捕食性病毒和细菌物种如何杀死栖息在受其他保护的生物膜中的猎物细菌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carey Nadell其他文献
Carey Nadell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于真菌的跨界群体感应干扰对水环境抗生素抗性基因传播的影响及调控研究
- 批准号:42307159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工补给对地下水抗生素抗性组与病原菌的影响及调控机制
- 批准号:42377392
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
过氧乙酸/亚硫酸盐体系降解内酰胺类抗生素作用机制及对氯化消毒副产物的影响与控制
- 批准号:52370009
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
排水管网沉积物中抗生素对功能菌降解PAHs的影响机制
- 批准号:
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:
相似海外基金
Immune recognition of Klebsiella pneumoniae O2v1 and O2v2 O-antigen subtypes
肺炎克雷伯菌 O2v1 和 O2v2 O 抗原亚型的免疫识别
- 批准号:
10739041 - 财政年份:2023
- 资助金额:
$ 40.92万 - 项目类别:
Leveraging Molecular Technologies to Improve Diagnosis and Management of Pediatric Acute Respiratory Illness in Resource-Constrained Settings
利用分子技术改善资源有限环境中儿科急性呼吸系统疾病的诊断和管理
- 批准号:
10739603 - 财政年份:2023
- 资助金额:
$ 40.92万 - 项目类别:
The roles of fosfomycin resistant subpopulations of Escherichia coli in urinary tract infection.
大肠杆菌磷霉素耐药亚群在尿路感染中的作用。
- 批准号:
10603417 - 财政年份:2023
- 资助金额:
$ 40.92万 - 项目类别:
Prognostic modeling of pediatric tracheostomy-associated respiratory tract infections
儿童气管切开相关呼吸道感染的预后模型
- 批准号:
10661889 - 财政年份:2023
- 资助金额:
$ 40.92万 - 项目类别:
Defining the host and pathogen determinants of peptidoglycan induced pathophysiology in Lyme disease
定义莱姆病肽聚糖诱导的病理生理学的宿主和病原体决定因素
- 批准号:
10566961 - 财政年份:2023
- 资助金额:
$ 40.92万 - 项目类别: