Microscale Radionuclide S-values for αRPT
αRPT 的微量放射性核素 S 值
基本信息
- 批准号:10713711
- 负责人:
- 金额:$ 47.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlpha Particle EmitterAlpha ParticlesAnatomic ModelsAnatomyBeta ParticleBloodBlood capillariesBone MarrowCellsChemoresistanceClinicalClinical TrialsDevelopmentDiseaseDisseminated Malignant NeoplasmDoseFamily suidaeFreezingFutureGenerationsGeometryGoalsHarvestHemorrhageHistologyHumanImageIndividualKidneyKupffer CellsLabelLaboratory miceLacrimal gland structureLibrariesLinear Energy TransferLiverLobeLobuleLungMarrowMethodologyMethodsMicroanatomyMiniature SwineModelingMusNephronsNormal tissue morphologyOrganOrgan ModelPathologyPatientsPhotonsPopulationPre-Clinical ModelPredispositionPublishingRadiation Dose UnitRadiobiologyRadioisotopesRadiopharmaceuticalsRiskRisk AssessmentSalivary GlandsSeriesSinusSiteSmall IntestinesSourceSpecimenStructureSystemic TherapyTestingTimeTissue ModelTissuesToxic effectUncertaintyWorkabsorptioncancer radiation therapycancer therapydigital imagingdosimetryeffective therapyhuman imagingin vivoindividual patientindividualized medicineinterestinterpatient variabilitykidney cortexmicroCTneoplastic cellnovelparticleporcine modelpreservationprogramsradiation resistanceskeletalsoft tissuetargeted treatmentthree-dimensional modelingtissue preparationtooltreatment planningtumorvalidation studies
项目摘要
Abstract / Summary – Project 2
Radiopharmaceuticals labeled with alpha-particle emitters (RPT) uniquely satisfy various conditions for therapy
of cancer in its advanced stages. Alpha particles have high linear-energy transfer (~100 keV / m) and thus short
tissue ranges (~50-80 m). Resultantly, they can sterilize tumor cells with as few as 1-3 particle traversals, in
contrast to the requirement of 1000s of beta-particle traversals. Furthermore, they are not susceptible to
chemoresistance, and are minimally susceptible to radioresistance. In the development of patient-specific
treatment planning for RPT, one primary objective is to ensure that the radiation dose to normal tissues and
organs approaches, but remains below, thresholds for toxicity. Assessment of alpha-particle dosimetry of organs
at potential toxicity risk can be performed via the MIRD schema, but it ideally must be applied at a spatial scale
that is pertinent to the specific cell populations which drive toxicity, and that is relevant to the ranges of the
emitted alpha particles. The MIRD schema states that the absorbed dose to a target region may be computed
as the product of the time-integrated activity in a source region (i.e., total number of radionuclide decays) and
the radionuclide S-value (absorbed dose to the target region per decay in the source region). Traditionally, the
MIRD defines source and target regions as whole organs (liver or kidney) or perhaps organ subregions (e.g.,
liver lobe or renal cortex). Given the ranges of alpha particles, however, source and target regions would ideally
be defined at a more microscale level. The main goal of Project 2 is thus to develop a comprehensive library of
microscale S-values which will support RPT in the following organs: bone marrow, kidneys, liver, lungs, salivary
glands, lacrimal glands, and small intestine. Aim 1 will develop geometric-based models of these tissues in both
the human and mouse; we have previously published such models for both bone marrow and kidneys. In Aim
2, we will develop a new generation of 3D tissue models for microscale S-value computation based upon an
extensive library of high-quality serial histology images of these same tissues. These models (both mouse and
human) will be constructed across multi-ROIs (quantifying intra-organ variability) and multiple individuals
(quantifying inter-patient variability). Prior studies have indicated that the laboratory mouse is not a robust pre-
clinical model for RPT induced marrow toxicity. Consequently, in Aim 3 studies will focus on microscale bone
marrow S-values in the higher-species model of the mini-pig. Also, a microscale model of the porcine kidney will
be developed to allow for inter-species extrapolation. Aim 4 studies will focus on validating our Aim 2 and 3
models with respect to tissue volume changes and potential loss of blood in the tissue capillaries. Understanding
these changes will allow more accurate modeling of their in-vivo state.
摘要/总结 – 项目 2
用α粒子发射体(RPT)标记的放射性药物独特地满足了各种治疗条件
晚期癌症的α粒子具有高线性能量转移(~100 keV/μm),因此时间短。
因此,它们只需 1-3 次粒子遍历即可杀死肿瘤细胞。
与数千次 β 粒子遍历的要求相反,它们不易受到影响。
化学耐药性,并且对放射耐药性的敏感性最小。
RPT 治疗计划的主要目标之一是确保正常组织和
器官接近但仍低于器官α粒子剂量测定的阈值。
潜在毒性风险可以通过 MIRD 模式进行,但理想情况下必须在空间尺度上应用
这与驱动毒性的特定细胞群有关,并且与
MIRD 模式指出,可以计算目标区域的吸收剂量。
作为源区域时间积分活动的乘积(即放射性核素衰变的总数)和
放射性核素 S 值(源区域每次衰变目标区域的吸收剂量)。
MIRD 将源区域和目标区域定义为整个器官(肝脏或肾脏)或可能的器官子区域(例如,
然而,考虑到α粒子的范围,源区域和目标区域将是理想的。
因此,项目 2 的主要目标是开发一个综合库。
微尺度 S 值将支持以下器官中的 RPT:骨髓、肾脏、肝脏、肺、唾液
目标 1 将开发这两种组织的几何模型。
人类和小鼠;我们之前已经发表过此类骨髓和肾脏模型。
2、我们将开发新一代3D组织模型,用于基于微尺度S值计算
这些相同组织的高质量连续组织学图像的广泛库。
人类)将跨多个 ROI(量化器官内变异性)和多个个体构建
(量化患者间的变异性)。
Aim 3 研究中测试的 RPT 诱导的骨髓毒性临床模型将侧重于微型骨。
小型猪的高等物种模型中的骨髓 S 值此外,猪肾脏的微型模型也会出现这种情况。
目标 4 研究将重点验证我们的目标 2 和 3。
关于组织体积变化和组织毛细血管中潜在的血液损失的模型。
这些变化将允许对其体内状态进行更准确的建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WESLEY E BOLCH其他文献
WESLEY E BOLCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WESLEY E BOLCH', 18)}}的其他基金
Project 1: Deployable Software for the Rapid Assessment of Organ Dose Following Radionuclide Intakes
项目 1:用于快速评估放射性核素摄入后器官剂量的可部署软件
- 批准号:
10589871 - 财政年份:2022
- 资助金额:
$ 47.7万 - 项目类别:
Project 1: Deployable Software for the Rapid Assessment of Organ Dose Following Radionuclide Intakes
项目 1:用于快速评估放射性核素摄入后器官剂量的可部署软件
- 批准号:
10327396 - 财政年份:2022
- 资助金额:
$ 47.7万 - 项目类别:
Developing whole-body computational phantoms for blood dosimetry to model the impact of radiation on the immune system
开发用于血液剂量测定的全身计算模型,以模拟辐射对免疫系统的影响
- 批准号:
10214573 - 财政年份:2020
- 资助金额:
$ 47.7万 - 项目类别:
Developing whole-body computational phantoms for blood dosimetry to model the impact of radiation on the immune system
开发用于血液剂量测定的全身计算模型,以模拟辐射对免疫系统的影响
- 批准号:
10429988 - 财政年份:2020
- 资助金额:
$ 47.7万 - 项目类别:
Developing whole-body computational phantoms for blood dosimetry to model the impact of radiation on the immune system
开发用于血液剂量测定的全身计算模型,以模拟辐射对免疫系统的影响
- 批准号:
10655343 - 财政年份:2020
- 资助金额:
$ 47.7万 - 项目类别:
MIRDCalc – A Community Tool for Deriving and Reporting Patient Organ Doses in Nuclear Medicine, Computed Tomography, and Hybrid Imaging
MIRDCalc — 用于导出和报告核医学、计算机断层扫描和混合成像中患者器官剂量的社区工具
- 批准号:
10456116 - 财政年份:2019
- 资助金额:
$ 47.7万 - 项目类别:
MIRDCalc – A Community Tool for Deriving and Reporting Patient Organ Doses in Nuclear Medicine, Computed Tomography, and Hybrid Imaging
MIRDCalc — 用于导出和报告核医学、计算机断层扫描和混合成像中患者器官剂量的社区工具
- 批准号:
10017971 - 财政年份:2019
- 资助金额:
$ 47.7万 - 项目类别:
MIRDCalc – A Community Tool for Deriving and Reporting Patient Organ Doses in Nuclear Medicine, Computed Tomography, and Hybrid Imaging
MIRDCalc — 用于导出和报告核医学、计算机断层扫描和混合成像中患者器官剂量的社区工具
- 批准号:
10696129 - 财政年份:2019
- 资助金额:
$ 47.7万 - 项目类别:
MIRDCalc – A Community Tool for Deriving and Reporting Patient Organ Doses in Nuclear Medicine, Computed Tomography, and Hybrid Imaging
MIRDCalc — 用于导出和报告核医学、计算机断层扫描和混合成像中患者器官剂量的社区工具
- 批准号:
10200807 - 财政年份:2019
- 资助金额:
$ 47.7万 - 项目类别:
APPLICATION OF MR IMAGING TO THE STUDY OF BONE DOSIMETRY
MR成像在骨剂量研究中的应用
- 批准号:
7369585 - 财政年份:2005
- 资助金额:
$ 47.7万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Alpha-emitter Imaging for Dosimetry and Treatment Planning
用于剂量测定和治疗计划的阿尔法发射体成像
- 批准号:
10713710 - 财政年份:2023
- 资助金额:
$ 47.7万 - 项目类别: