Macro-to-micro (M2µ) Activity Apportionment for αRPT
αRPT 的宏观到微观 (M2µ) 活动分配
基本信息
- 批准号:10713712
- 负责人:
- 金额:$ 49.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:Alpha Particle EmitterAlpha ParticlesAnatomyAnimalsAntibodiesBone MarrowClinicalClinical TrialsCombined Modality TherapyDataDoseDose LimitingDrug KineticsERBB2 geneFDA approvedFOLH1 geneFamily suidaeFractionationGoalsHumanImageKidneyLacrimal gland structureLinkLiteratureLiverLungMalignant NeoplasmsMalignant neoplasm of prostateMeasurementMeasuresMedicineMetastatic Neoplasm to the BoneMethodologyMethodsMicroscopicMiniature SwineModalityModelingMusOrganOrgan ModelPatientsPeptidesPre-Clinical ModelProcessPublishingRadiobiologyRadioisotopesRadiopharmaceuticalsReportingRiskSalivary GlandsSmall IntestinesStandardizationTestingTherapeuticTherapeutic UsesTimeToxic effectTranslatingTranslationsUncertaintyUnited States National Institutes of HealthWorkabsorptioncancer therapyclinical practiceclinically relevantdesigndosimetryinterestmouse modelparticleparticle therapyporcine modelpre-clinicalpredicting responseprogramsresponsesingle photon emission computed tomographysmall moleculespatiotemporaltargeted deliverytargeted treatmenttranslation to humanstreatment planning
项目摘要
Recent advances in the targeted delivery of radionuclides and the increased availability of -emitters appropriate
for clinical use have led to patient trials of multiple α-emitter radiopharmaceutical therapeutics (RPTs). One of
these, Xofigo (223RaCl2) was FDA-approved and is in routine clinical practice, with many others likely to follow.
One of the stated goals (pillars) of the NIH is a greater level of personalization in medicine. In the realm of
radiopharmaceutical therapy (RPT) this translates directly as a need for more accurate personalized dosimetry
in order to enable fractionation and administered activity tailored to each patient. However, current dosimetry
paradigms are poorly suited to RPT. This reality is reflected by the discrepancies between clinical (or
experimental) toxicity and expected toxicity calculated using standard organ-level (or voxel-level) dosimetry,
including most notably: (a) hematotoxicity in 223Ra therapy of bone metastases, (b) renal and salivary gland
toxicity in pre-clinical models and patients. The objective of this work is to create a dosimetric methodology more
suited to αRPT, namely the Macro to micro (M2) methodology, which requires sub-organ activity apportionment
factors for organs at risk. This will be accomplished via the following Aims: 1. In murine models, measure αRPT
activity concentration in selected whole organs and in relevant organ sub-regions; generate apportionment factor
histograms. The translation to human assumes that the link between macroscopic and microscopic
spatiotemporal relationship for a given agent measured in a pre-clinical model will apply to the human as the
distribution of the agent to the different microscopic compartments should remain the same. We will test and
quantify the validity of this assumption and refine the human apportionment factors by introducing a third species,
the mini-pig In Aim 2. We will assess apportionment factor transferability, by obtaining corresponding
apportionment factor histograms for a porcine model. In Aim 3. We will demonstrate that M2µ predicts toxicity in
the porcine model. 4. Apply the M2µ methodology to clinical trial data to quantify the potential benefit of
personalized M2µ dosimetry and/or derive dose–response relationships. Successful completion of the proposal
will reconcile experimental and clinical results not currently understood and provide a robust standardized
dosimetry for personalized dosimetry-based treatment planning of αRPT. Such standardization will enable the
dosimetry to be normalized to EQD2, thus enabling rational combinations with other RPTs or external beam
therapy as well as relevant absorbed dose reporting. Here we plan to expand this approach to encompass the
wide range of RPT/organ combinations that have either been shown to be or are potentially dose-limiting and
that require the Macro to micro (M2) methodology to properly correlate dosimetry with toxicity thresholds and
provide a deliverable that will allow end-users to convert macroscopically-measured activity to standardized
dosimetry at the organ and (clinically relevant) sub-organ-level for a wide range of RPTs and correspondingly
relevant organs.
放射性核素定向输送和 α 发射体可用性增加的最新进展
临床应用导致了多种 α 发射体放射性药物疗法(RPT)的患者试验。
其中,Xofigo (223RaCl2) 已获得 FDA 批准,并已进入常规临床实践,许多其他药物可能会跟进。
NIH 的既定目标(支柱)之一是在医学领域实现更高水平的个性化。
放射性药物治疗 (RPT) 这直接意味着需要更准确的个性化剂量测定
为了能够针对每个患者进行分次和给药活动,但是,目前的剂量测定。
范式不太适合 RPT 临床(或)之间的差异反映了这一现实。
实验)毒性和使用标准器官水平(或体素水平)剂量测定计算的预期毒性,
其中最值得注意的是:(a) 223Ra 骨转移治疗中的血液毒性,(b) 肾和唾液腺
这项工作的目的是创建一种剂量测定方法。
适合αRPT,即宏观到微观(M2)方法,需要子器官活动分配
这将通过以下目标来实现: 1. 在小鼠模型中,测量 αRPT。
选定的整个器官和相关器官子区域的活动浓度生成分配因子;
直方图对人类的翻译假设了宏观和微观之间的联系。
在临床前模型中测量的给定药物的时空关系将适用于人类
我们将测试和分配药剂到不同微观室的分布应保持相同。
量化这一假设的有效性,并通过引入第三个物种来完善人类分配因素,
目标2中的迷你猪。我们将评估分配因子的可转移性,通过相应的获取
猪模型的分配因子直方图。在目标 3 中,我们将证明 M2μ 可以预测毒性。
4. 将 M2μ 方法应用于临床试验数据以量化潜在益处。
个性化 M2μ 剂量测定和/或得出剂量-反应关系 成功完成提案。
将协调目前尚未理解的实验和临床结果,并提供稳健的标准化
基于剂量测定的个性化 αRPT 治疗计划的剂量测定这种标准化将使
剂量测定将标准化为 EQD2,从而实现与其他 RPT 或外部束的合理组合
治疗以及相关的吸收剂量报告在这里,我们计划扩展这种方法以涵盖
广泛的 RPT/器官组合已被证明具有或潜在的剂量限制性
需要宏观到微观 (M2) 方法将剂量测定与毒性阈值正确关联起来
提供可交付成果,允许最终用户将宏观测量的活动转换为标准化的活动
器官和(临床相关)亚器官水平的剂量测定,适用于各种 RPT 和相应的
有关机关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Francois Hobbs其他文献
Robert Francois Hobbs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Francois Hobbs', 18)}}的其他基金
Combination Radiopharmaceutical Therapy and External Beam Radiotherapy
放射药物治疗与外照射放射治疗的联合治疗
- 批准号:
10668390 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Combination Radiopharmaceutical Therapy and External Beam Radiotherapy
放射药物治疗与外照射放射治疗的联合治疗
- 批准号:
10473785 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Combination Radiopharmaceutical Therapy and External Beam Radiotherapy
放射药物治疗与外照射放射治疗的联合治疗
- 批准号:
10252753 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Modeling Targeted Alpha Particle Therapy of Cancer
癌症靶向阿尔法粒子治疗建模
- 批准号:
8468664 - 财政年份:2012
- 资助金额:
$ 49.89万 - 项目类别:
Modeling Targeted Alpha Particle Therapy of Cancer
癌症靶向阿尔法粒子治疗建模
- 批准号:
8295112 - 财政年份:2012
- 资助金额:
$ 49.89万 - 项目类别:
Modeling Targeted Alpha Particle Therapy of Cancer
癌症靶向阿尔法粒子治疗建模
- 批准号:
8658040 - 财政年份:2012
- 资助金额:
$ 49.89万 - 项目类别:
相似海外基金
Core 1: Animal Models, Pathology and Tissue
核心 1:动物模型、病理学和组织
- 批准号:
10713715 - 财政年份:2023
- 资助金额:
$ 49.89万 - 项目类别:
Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
- 批准号:
10446871 - 财政年份:2022
- 资助金额:
$ 49.89万 - 项目类别:
Opening the Therapeutic Window for PSMA-Targeted Molecular Radiotherapy
打开 PSMA 靶向分子放射治疗的治疗窗口
- 批准号:
10394232 - 财政年份:2019
- 资助金额:
$ 49.89万 - 项目类别:
Opening the Therapeutic Window for PSMA-Targeted Molecular Radiotherapy
打开 PSMA 靶向分子放射治疗的治疗窗口
- 批准号:
9920131 - 财政年份:2019
- 资助金额:
$ 49.89万 - 项目类别: