Implantable Microdevice for the Treatment of Hydrocephalus

用于治疗脑积水的植入式微型装置

基本信息

  • 批准号:
    7911975
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The brain and spinal cord are protected by a fluid called cerebrospinal fluid (CSF). CSF is produced in the brain, circulates throughout the subarchnoid space around the brain and spinal cord, and is absorbed into the sagittal sinus through a thin membrane (dura mater) that contains biological valves called arachnoid granulations (AG). When the AGs do not function properly this dynamic equilibrium is altered and the pathologic condition of hydrocephalus ensues. Hydrocephalus is an abnormal accumulation of CSF within the subarachnoid space of the brain due to impaired CSF absorption. Hydrocephalus is one of the most frequently encountered problems in Neurosurgery. 8,305 newly diagnosed cases of hydrocephalus were treated in the year 2000 and the overall cost was approximately $1.1 billion in the United States alone. The current treatment of hydrocephalus consists of implanting a shunt device that diverts the CSF from the brain into another part of the body such as the peritoneum. The shunt device consists of a one-way valve and two long tubes connected to the ventricular space and the drainage space, respectively. The treatment which was developed in the 1950's has remained essentially unchanged for over 50 years. Ventriculo-peritoneal (VP) shunts are the most common type of shunt in use but have significant shortcomings such as high failure rate (~ 50% within 2 years) and imprecise flow control resulting in under- or over-shunting. We propose an innovative approach for the treatment of hydrocephalus. The goal of our research is to develop an implantable microdevice analogous to the native biological valve that diverts excessive CSF from the subarachnoid space to the sagittal sinus. We are attempting to replace the malfunctioning arachnoid granulations that cause hydrocephalus with a miniature artificial device to restore the normal absorptive function. The proposed microfabricated arachnoid granulations (MAG) consist of an array of hollow microneedles and corresponding one-way microvalves. The microneedle array will be surgically placed to pierce the dura mater to act as a one-way outlet for CSF from the subarachnoid space to the venous sinus. Microvalves within the microneedles act as passive valves that regulate the flow of CSF to the sagittal sinus. The flow of CSF will be in response to the pressure differential between the sagittal sinus and the subarachnoid space just as in normally functioning AG. In order to achieve the goal, three specific aims are proposed: 1) Design, simulate, and fabricate MAGs capable of diverting CSF equivalent to normally functioning AG, 2) Test the MAGs in vitro using a bench-top CSF simulator, 3) Demonstrate surgical implantation and short-term functioning of the MAG using an animal model. If successful, the proposed MAG will pioneer a new era in the treatment of hydrocephalus. PUBLIC HEALTH RELEVANCE: This research project will develop an innovative implantable device for the treatment of hydrocephalus which is one of the most frequently encountered problems in Neurosurgery. An implantable microdevice that resembles the function of the native arachnoid granulations which acts as biological valves to eliminate cerebrospinal fluid will be developed using microfabrication technology. The proposed microfabricated arachnoid granulations (MAG) will make it possible to replace the malfunctioning arachnoid granulations that lead to hydrocephalus. If successful, the proposed MAG may pioneer a new era in the treatment of hydrocephalus.
描述(由申请人提供):大脑和脊髓受到称为脑脊液(CSF)的液体的保护。 CSF是在大脑中产生的,在大脑和脊髓周围的亚相囊中循环,并通过薄膜(Dura Mater)吸收到矢状窦中,其中包含称为蛛网膜颗粒的生物瓣膜(AG)。当AG无法正常运行时,这种动态平衡会改变并随之而来的病理状况。脑积水是由于CSF吸收受损而导致大脑亚蛛网膜下腔空间内CSF的异常积累。脑积水是神经外科中最常见的问题之一。在2000年治疗了8,305例新诊断的脑积水病例,仅在美国,总成本约为11亿美元。当前对脑积水的处理包括将CSF从大脑转移到人体的另一部分(例如腹膜)中。分流器设备由一个单向阀和两个连接到心室空间和排水空间的长管组成。在1950年代开发的治疗方法基本上保持了50多年的状态。心室 - 腹膜(VP)分流器是最常见的分流类型,但具有明显的缺点,例如高功能率(2年内〜50%),并且不精确地控制流量控制,导致不足或过度泄漏。我们提出了一种用于治疗脑积水的创新方法。我们研究的目的是开发一种类似于天然生物瓣膜的可植入的微电位,该瓣膜将过多的CSF从蛛网膜下腔空间转移到矢状窦。我们试图用微型人造装置替代引起脑积水的蛛网膜颗粒,以恢复正常的吸收功能。所提出的微型蛛网膜颗粒(MAG)由一系列空心微针和相应的单向微欧立面组成。将通过手术放置微针阵列,以刺穿硬脑膜,以充当从蛛网膜下腔到静脉窦的CSF的单向出口。微针中的微丙烯酸充当被动阀,该瓣膜调节CSF向矢状窦的流动。 CSF的流动将响应矢状窦与蛛网膜下腔空间之间的压力差,就像正常运作的Ag一样。为了实现目标,提出了三个特定的目标:1)设计,模拟和制造能够将CSF等效的CSF转移到正常运作的AG中,2)使用基准的CSF模拟器在体外测试MAGS,3)3)证明使用动物模型的MAG进行手术植入和短期功能。如果成功的话,拟议的MAG将在治疗脑积水方面的新时代。 公共卫生相关性:该研究项目将开发一种可用于治疗脑积水的创新植入装置,这是神经外科中最常见的问题之一。一种类似于天然蛛网膜粒的功能的可植入的微电位,该植物充当消除脑脊液的生物瓣膜的功能,将使用微结构技术开发。提出的微型蛛网膜颗粒(MAG)将使替代导致脑积水的蛛网膜颗粒的故障。如果成功的话,拟议的MAG可能会在治疗脑积水方面开创新时代。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel microneedle array for the treatment of hydrocephalus.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HONGSEOK M NOH其他文献

HONGSEOK M NOH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HONGSEOK M NOH', 18)}}的其他基金

Implantable Microdevice for the Treatment of Hydrocephalus
用于治疗脑积水的植入式微型装置
  • 批准号:
    7471883
  • 财政年份:
    2008
  • 资助金额:
    $ 8万
  • 项目类别:
Implantable Microdevice for the Treatment of Hydrocephalus
用于治疗脑积水的植入式微型装置
  • 批准号:
    7585263
  • 财政年份:
    2008
  • 资助金额:
    $ 8万
  • 项目类别:

相似国自然基金

促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
  • 批准号:
    82370515
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
  • 批准号:
    82360301
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
  • 批准号:
    82302691
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
  • 批准号:
    82374466
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Role of intravascular ERO1@ in acute lung injury
血管内ERO1@在急性肺损伤中的作用
  • 批准号:
    10686908
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
Role of intravascular ERO1@ in acute lung injury
血管内ERO1@在急性肺损伤中的作用
  • 批准号:
    10267181
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
Role of intravascular ERO1@ in acute lung injury
血管内ERO1@在急性肺损伤中的作用
  • 批准号:
    10469645
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
Role of intravascular ERO1@ in acute lung injury
血管内ERO1@在急性肺损伤中的作用
  • 批准号:
    10027023
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
Platelets and microvascular thrombosis in inflammation
炎症中的血小板和微血管血栓形成
  • 批准号:
    9262053
  • 财政年份:
    2016
  • 资助金额:
    $ 8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了