Polarization and directed cell movements in engineered cellular environments
工程细胞环境中的极化和定向细胞运动
基本信息
- 批准号:7847479
- 负责人:
- 金额:$ 22.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-21 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesArthritisAtherosclerosisAttentionBiochemicalBiochemical ProcessBiologicalBiological AssayBiologyBreastCadherinsCalciumCell AdhesionCell Adhesion MoleculesCell LineCell PolarityCell-Cell AdhesionCellsChemotactic FactorsChemotaxisComplexCuesDevelopmentDevicesDiseaseDisease ProgressionDrosophila genusEnvironmentEpithelial CellsEquilibriumExtracellular MatrixFoundationsFutureGenerationsGoalsGroup MeetingsGrowth FactorGuanosine Triphosphate PhosphohydrolasesHealthHumanHuman DevelopmentImageImmobilizationIntegrinsIntercellular JunctionsIntracellular Signaling ProteinsInvestigationJointsKnowledgeLifeLigationMalignant - descriptorMalignant NeoplasmsMammary NeoplasmsMammary glandMental RetardationMicrofabricationMorphogenesisMusNatural regenerationNeoplasm MetastasisNon-MalignantOrganismOutcomePatternPhosphotransferasesPost-Translational Protein ProcessingProcessProteinsProtocols documentationQuantitative EvaluationsRegulationRelative (related person)ResearchSignal TransductionStimulusSurfaceTechniquesTechnologyTestingTimeTissuesTumor Cell LineValidationWorkcancer preventioncell behaviorcell motilitycellular engineeringcellular imagingchemokinedensitydesigneffective therapyextracellularin vivolithographymembermigrationmultidisciplinarypolarized cellprogramsprotein distributionpublic health relevancerepairedresponserho GTP-Binding Proteinsspatiotemporalstem cell differentiationsuccesstissue culturetooltumor progression
项目摘要
DESCRIPTION: The research program addresses questions of fundamental importance to human health-biological design rules that determine whether cells respond to chemotactic signals by disrupting intercellular contacts in ways that fundamentally impact the organization and integrity of tissues. This research exploits the enabling tools of soft lithography and live cell imaging to define quantitative biological design rules that control cellular decisions. Specifically, we will (i) define quantitatively how concentration profiles of an immobilized, intercellular adhesive cue, cadherin govern the differential migratory response (haptotaxis) of normal and malignant mammary epithelial cells, (ii) identify the impact of chemotactic gradients on epithelial cell polarity and migration, and (iii) determine how cadherin ligation and chemoattractants coordinately regulate the spatiotemporal distributions of GTPase activities that direct cell migration. Soft lithography enables the establishment of defined fields of adhesive and chemotactic cues in ways that are not accessible in vivo or in standard tissue culture format. To this end, we will uniquely quantify cell migratory responses to patterns of adhesive and soluble cues-individually or in combination-and define synergistic or antagonistic interactions regulating cell outcomes. Live cell imaging will then directly determine how spatially and temporally distributed extracellular cues alter zones of signaling activities within single cells and thus bridge the gap between external stimuli, global cell response, and fundamental intracellular biochemical changes. If successful, the proposed strategies in this R21 proposal will uniquely identify mechanisms governing cell adhesion and chemotaxis in cancer and in development. The validation of these approaches will lay the foundation for future investigations of additional factors such as integrins, growth factors, substrate stiffness, or any number of parameters relevant to human development and disease. This multidisciplinary team possesses core competencies in microfabrication (Nuzzo), surface modification and protein immobilization (Leckband), biochemical/cell biological techniques (Wang), as well as expertise in cadherin biology (Leckband) and chemotaxis (Wang) essential for the success of this program. Nuzzo and Leckband have worked together on multiple projects over several years. Leckband and Wang are collaborating on an independent project involving cadherins and stem cell differentiation. Wang frequently advises Leckband group members on experimental protocols for cell work, and Wang and Leckband periodically hold joint group meetings. The labs and offices of all three PIs are in adjacent buildings. This proposal results from several conversations between the PIs.
Public Health Relevance: Cell migration is an essential morphogenetic process in tissue formation, repair, and regeneration. It also drives disease progression in cancer, mental retardation, atherosclerosis, and arthritis. In tissues, cell movements in both normal and diseased tissues involve the coordinated regulation of cell motility and cell-cell adhesion. Cell motility machinery is often triggered by soluble growth factors and chemoattractants, with a concomitant destabilization of intercellular adhesion. Furthermore, gradients of both chemoattractants and adhesion are thought to guide cell movements in tissues. It is the interplay between signals governing chemotaxis or cell migration versus cell-cell adhesion that ultimately governs the formation and structural integrity of tissues. Understanding these processes in both normal development and disease progression is predicated on elucidating the biological design rules that regulate the balance between firm intercellular adhesion and migration. Despite the importance of this issue to human health, these questions have received very little attention. We postulate that the current knowledge gap is due to the limitations inherent in current approaches used to study cell adhesion, migration, and chemotaxis as well as the lack of approaches capable of quantitatively evaluating the impact of adhesive and diffusive signals on cell behavior. This multidisciplinary team embodies the core capabilities needed to address this complex problem. Specifically, current competencies in soft lithography, cell adhesion, and cell migration enable the generation of quantitatively defined biochemical cues-both in immobilized and diffusive form-in order to quantitatively define the balance of different signals that mutually regulate cell behavior. Importantly, these devices enable the quantitative definition of biochemical signals in ways that are not accessible in vivo or in standard tissue culture format. This level of control is essential for defining, for example, chemoattractant in uniform or gradient forms that destabilize cell-cell junctions to promote migration. To this end, this proposed research will use these devices to uniquely quantify cell migratory responses to patterns of adhesive and soluble cues-individually or in combination-in order to define synergistic or antagonistic interactions between chemotactic and adhesive biochemical cues that regulate cell outcomes. We will combine these patterning tools with live cell imaging to directly bridge the gap between external stimuli and the fundamental intracellular biochemical processes that underlie global cell response. This unique complementation of engineered cellular environments and real-time spatiotemporal imaging of biochemical processes should establish causal relationships between spatially and temporally distributed extracellular cues, the intracellular coordination of zones of signaling activities and protein distributions within single cells, and global cell response. Importantly, such real-time spatiotemporal information is also not accessible with standard biochemical assays. The knowledge generated by these studies will be directly relevant to human health and may identify effective therapies for the treatment and prevention of cancer, for example. Furthermore, if successful, the general validation of these approaches will lay the foundation for further studies of additional biochemical factors or environmental parameters-as single components or in various combinations-including integrins, growth factors, substrate stiffness, or any number of parameters relevant to human development and disease.
描述:该研究项目解决了对人类健康至关重要的问题——生物学设计规则,确定细胞是否通过破坏细胞间接触来响应趋化信号,从而从根本上影响组织的组织和完整性。这项研究利用软光刻和活细胞成像的支持工具来定义控制细胞决策的定量生物设计规则。具体来说,我们将(i)定量定义固定的细胞间粘附信号钙粘蛋白的浓度分布如何控制正常和恶性乳腺上皮细胞的差异迁移反应(趋触性),(ii)确定趋化梯度对上皮细胞极性的影响和迁移,以及 (iii) 确定钙粘蛋白连接和化学引诱剂如何协调调节指导细胞迁移的 GTP 酶活性的时空分布。 软光刻能够以体内或标准组织培养格式无法达到的方式建立明确的粘附和趋化线索区域。为此,我们将独特地量化细胞对粘附和可溶性线索模式的迁移反应(单独或组合),并定义调节细胞结果的协同或拮抗相互作用。然后,活细胞成像将直接确定空间和时间分布的细胞外信号如何改变单细胞内的信号活动区域,从而弥合外部刺激、整体细胞反应和基本细胞内生化变化之间的差距。如果成功,该 R21 提案中提出的策略将独特地识别癌症和发育中细胞粘附和趋化性的控制机制。这些方法的验证将为未来研究其他因素奠定基础,例如整合素、生长因子、基质硬度或与人类发育和疾病相关的任何数量的参数。 这个多学科团队拥有微加工 (Nuzzo)、表面修饰和蛋白质固定 (Leckband)、生化/细胞生物学技术 (Wang) 的核心能力,以及钙粘蛋白生物学 (Leckband) 和趋化性 (Wang) 方面的专业知识,这些知识对于以下项目的成功至关重要这个程序。纳佐和莱克班德多年来在多个项目上合作。 Leckband 和 Wang 正在合作开展一个涉及钙粘蛋白和干细胞分化的独立项目。 王经常就细胞工作的实验方案向莱克班德小组成员提供建议,王和莱克班德定期举行联合小组会议。所有三位 PI 的实验室和办公室都位于相邻的建筑物内。该提案是 PI 之间多次对话的结果。
公共卫生相关性:细胞迁移是组织形成、修复和再生中重要的形态发生过程。它还会导致癌症、智力低下、动脉粥样硬化和关节炎等疾病的进展。在组织中,正常组织和患病组织中的细胞运动都涉及细胞运动和细胞间粘附的协调调节。细胞运动机制通常由可溶性生长因子和化学引诱剂触发,并伴随着细胞间粘附的不稳定。此外,化学引诱剂和粘附的梯度被认为可以引导组织中的细胞运动。控制趋化性或细胞迁移的信号与细胞间粘附的信号之间的相互作用最终控制组织的形成和结构完整性。了解正常发育和疾病进展中的这些过程的前提是阐明调节细胞间牢固粘附和迁移之间平衡的生物设计规则。尽管这个问题对人类健康很重要,但这些问题却很少受到关注。我们假设当前的知识差距是由于当前用于研究细胞粘附、迁移和趋化性的方法固有的局限性以及缺乏能够定量评估粘附和扩散信号对细胞行为的影响的方法造成的。这个多学科团队体现了解决这一复杂问题所需的核心能力。具体来说,目前在软光刻、细胞粘附和细胞迁移方面的能力能够生成定量定义的生化线索(固定和扩散形式),以便定量定义相互调节细胞行为的不同信号的平衡。重要的是,这些设备能够以体内或标准组织培养形式无法实现的方式定量定义生化信号。这种控制水平对于定义例如均匀或梯度形式的趋化剂至关重要,这些趋化剂会破坏细胞-细胞连接的稳定性以促进迁移。为此,这项拟议的研究将使用这些设备来独特地量化细胞对粘附和可溶性线索模式的迁移反应(单独或组合),以便定义调节细胞结果的趋化和粘附生化线索之间的协同或拮抗相互作用。我们将这些图案化工具与活细胞成像相结合,直接弥合外部刺激与构成全局细胞反应的基本细胞内生化过程之间的差距。工程细胞环境和生化过程的实时时空成像的这种独特互补应该在空间和时间分布的细胞外线索、信号活动区域的细胞内协调和单细胞内蛋白质分布以及全局细胞反应之间建立因果关系。重要的是,这种实时时空信息也无法通过标准生化测定获得。 这些研究产生的知识将与人类健康直接相关,并可能确定治疗和预防癌症的有效疗法。此外,如果成功,这些方法的总体验证将为进一步研究其他生化因素或环境参数(作为单一成分或各种组合)奠定基础,包括整合素、生长因子、基质刚度或与相关的任何数量的参数。人类发展与疾病。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cadherin recognition and adhesion.
- DOI:10.1016/j.ceb.2012.05.014
- 发表时间:2012-10
- 期刊:
- 影响因子:7.5
- 作者:Leckband, Deborah;Sivasankar, Sanjeevi
- 通讯作者:Sivasankar, Sanjeevi
Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation.
- DOI:10.1152/physrev.00004.2010
- 发表时间:2011-04
- 期刊:
- 影响因子:33.6
- 作者:Niessen CM;Leckband D;Yap AS
- 通讯作者:Yap AS
Biophysics of cadherin adhesion.
- DOI:10.1007/978-94-007-4186-7_4
- 发表时间:2012-01-01
- 期刊:
- 影响因子:0
- 作者:Leckband, Deborah;Sivasankar, Sanjeevi
- 通讯作者:Sivasankar, Sanjeevi
Cadherin point mutations alter cell sorting and modulate GTPase signaling.
钙粘蛋白点突变会改变细胞分类并调节 GTP 酶信号传导。
- DOI:10.1242/jcs.087395
- 发表时间:2012
- 期刊:
- 影响因子:4
- 作者:Tabdili,Hamid;Barry,AdrienneK;Langer,MatthewD;Chien,Yuan-Hung;Shi,Quanming;Lee,KengJin;Lu,Shaoying;Leckband,DeborahE
- 通讯作者:Leckband,DeborahE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deborah E Leckband其他文献
Deborah E Leckband的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deborah E Leckband', 18)}}的其他基金
Finding the right niche:quantifying protein folding stability in materials
找到合适的利基:量化材料中的蛋白质折叠稳定性
- 批准号:
9883022 - 财政年份:2019
- 资助金额:
$ 22.28万 - 项目类别:
Polarization and directed cell movements in engineered cellular environments
工程细胞环境中的极化和定向细胞运动
- 批准号:
7658655 - 财政年份:2009
- 资助金额:
$ 22.28万 - 项目类别:
LATERAL DIFFUSION OF ADHESION PROTEINS ON SUPPORTED BILAYERS
粘附蛋白在支撑双层上的横向扩散
- 批准号:
7600944 - 财政年份:2007
- 资助金额:
$ 22.28万 - 项目类别:
相似国自然基金
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别: