Polarization and directed cell movements in engineered cellular environments
工程细胞环境中的极化和定向细胞运动
基本信息
- 批准号:7847479
- 负责人:
- 金额:$ 22.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-21 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesArthritisAtherosclerosisAttentionBiochemicalBiochemical ProcessBiologicalBiological AssayBiologyBreastCadherinsCalciumCell AdhesionCell Adhesion MoleculesCell LineCell PolarityCell-Cell AdhesionCellsChemotactic FactorsChemotaxisComplexCuesDevelopmentDevicesDiseaseDisease ProgressionDrosophila genusEnvironmentEpithelial CellsEquilibriumExtracellular MatrixFoundationsFutureGenerationsGoalsGroup MeetingsGrowth FactorGuanosine Triphosphate PhosphohydrolasesHealthHumanHuman DevelopmentImageImmobilizationIntegrinsIntercellular JunctionsIntracellular Signaling ProteinsInvestigationJointsKnowledgeLifeLigationMalignant - descriptorMalignant NeoplasmsMammary NeoplasmsMammary glandMental RetardationMicrofabricationMorphogenesisMusNatural regenerationNeoplasm MetastasisNon-MalignantOrganismOutcomePatternPhosphotransferasesPost-Translational Protein ProcessingProcessProteinsProtocols documentationQuantitative EvaluationsRegulationRelative (related person)ResearchSignal TransductionStimulusSurfaceTechniquesTechnologyTestingTimeTissuesTumor Cell LineValidationWorkcancer preventioncell behaviorcell motilitycellular engineeringcellular imagingchemokinedensitydesigneffective therapyextracellularin vivolithographymembermigrationmultidisciplinarypolarized cellprogramsprotein distributionpublic health relevancerepairedresponserho GTP-Binding Proteinsspatiotemporalstem cell differentiationsuccesstissue culturetooltumor progression
项目摘要
DESCRIPTION: The research program addresses questions of fundamental importance to human health-biological design rules that determine whether cells respond to chemotactic signals by disrupting intercellular contacts in ways that fundamentally impact the organization and integrity of tissues. This research exploits the enabling tools of soft lithography and live cell imaging to define quantitative biological design rules that control cellular decisions. Specifically, we will (i) define quantitatively how concentration profiles of an immobilized, intercellular adhesive cue, cadherin govern the differential migratory response (haptotaxis) of normal and malignant mammary epithelial cells, (ii) identify the impact of chemotactic gradients on epithelial cell polarity and migration, and (iii) determine how cadherin ligation and chemoattractants coordinately regulate the spatiotemporal distributions of GTPase activities that direct cell migration. Soft lithography enables the establishment of defined fields of adhesive and chemotactic cues in ways that are not accessible in vivo or in standard tissue culture format. To this end, we will uniquely quantify cell migratory responses to patterns of adhesive and soluble cues-individually or in combination-and define synergistic or antagonistic interactions regulating cell outcomes. Live cell imaging will then directly determine how spatially and temporally distributed extracellular cues alter zones of signaling activities within single cells and thus bridge the gap between external stimuli, global cell response, and fundamental intracellular biochemical changes. If successful, the proposed strategies in this R21 proposal will uniquely identify mechanisms governing cell adhesion and chemotaxis in cancer and in development. The validation of these approaches will lay the foundation for future investigations of additional factors such as integrins, growth factors, substrate stiffness, or any number of parameters relevant to human development and disease. This multidisciplinary team possesses core competencies in microfabrication (Nuzzo), surface modification and protein immobilization (Leckband), biochemical/cell biological techniques (Wang), as well as expertise in cadherin biology (Leckband) and chemotaxis (Wang) essential for the success of this program. Nuzzo and Leckband have worked together on multiple projects over several years. Leckband and Wang are collaborating on an independent project involving cadherins and stem cell differentiation. Wang frequently advises Leckband group members on experimental protocols for cell work, and Wang and Leckband periodically hold joint group meetings. The labs and offices of all three PIs are in adjacent buildings. This proposal results from several conversations between the PIs.
Public Health Relevance: Cell migration is an essential morphogenetic process in tissue formation, repair, and regeneration. It also drives disease progression in cancer, mental retardation, atherosclerosis, and arthritis. In tissues, cell movements in both normal and diseased tissues involve the coordinated regulation of cell motility and cell-cell adhesion. Cell motility machinery is often triggered by soluble growth factors and chemoattractants, with a concomitant destabilization of intercellular adhesion. Furthermore, gradients of both chemoattractants and adhesion are thought to guide cell movements in tissues. It is the interplay between signals governing chemotaxis or cell migration versus cell-cell adhesion that ultimately governs the formation and structural integrity of tissues. Understanding these processes in both normal development and disease progression is predicated on elucidating the biological design rules that regulate the balance between firm intercellular adhesion and migration. Despite the importance of this issue to human health, these questions have received very little attention. We postulate that the current knowledge gap is due to the limitations inherent in current approaches used to study cell adhesion, migration, and chemotaxis as well as the lack of approaches capable of quantitatively evaluating the impact of adhesive and diffusive signals on cell behavior. This multidisciplinary team embodies the core capabilities needed to address this complex problem. Specifically, current competencies in soft lithography, cell adhesion, and cell migration enable the generation of quantitatively defined biochemical cues-both in immobilized and diffusive form-in order to quantitatively define the balance of different signals that mutually regulate cell behavior. Importantly, these devices enable the quantitative definition of biochemical signals in ways that are not accessible in vivo or in standard tissue culture format. This level of control is essential for defining, for example, chemoattractant in uniform or gradient forms that destabilize cell-cell junctions to promote migration. To this end, this proposed research will use these devices to uniquely quantify cell migratory responses to patterns of adhesive and soluble cues-individually or in combination-in order to define synergistic or antagonistic interactions between chemotactic and adhesive biochemical cues that regulate cell outcomes. We will combine these patterning tools with live cell imaging to directly bridge the gap between external stimuli and the fundamental intracellular biochemical processes that underlie global cell response. This unique complementation of engineered cellular environments and real-time spatiotemporal imaging of biochemical processes should establish causal relationships between spatially and temporally distributed extracellular cues, the intracellular coordination of zones of signaling activities and protein distributions within single cells, and global cell response. Importantly, such real-time spatiotemporal information is also not accessible with standard biochemical assays. The knowledge generated by these studies will be directly relevant to human health and may identify effective therapies for the treatment and prevention of cancer, for example. Furthermore, if successful, the general validation of these approaches will lay the foundation for further studies of additional biochemical factors or environmental parameters-as single components or in various combinations-including integrins, growth factors, substrate stiffness, or any number of parameters relevant to human development and disease.
描述:研究计划解决了对人类健康生物设计规则的基本重要性的问题,这些问题通过以根本上影响组织组织和完整性的方式破坏细胞间接触来确定细胞是否响应趋化信号。这项研究利用了软光刻和活细胞成像的能力工具来定义控制细胞决策的定量生物设计规则。具体而言,我们(i)将(i)定义固定的,细胞间粘合剂提示的浓度特征如何控制正常和恶性乳腺上皮细胞的差异迁移反应(HAPTOTAXIS),(II)确定趋化性梯度对上皮细胞和迁移的影响(III)的影响(II)。直接细胞迁移的GTPase活性的时空分布。 软光刻可以以无法在体内或标准组织培养形式无法访问的方式建立定义的粘合剂和趋化线索领域。为此,我们将唯一地量化细胞迁移对粘合剂和可溶性提示模式的响应 - 个别或组合,并定义调节细胞结果的协同或拮抗相互作用。然后,活细胞成像将直接直接确定在空间和时间分布的细胞外提示如何改变单个细胞内的信号传导区域,从而弥合外部刺激,全球细胞反应和基本细胞内生化变化之间的间隙。如果成功的话,该R21提案中提出的策略将唯一确定癌症和发育中细胞粘附和趋化性的机制。这些方法的验证将为未来研究其他因素(例如整联蛋白,生长因子,底物刚度或与人类发育和疾病有关的任何数量的参数)奠定基础。 这个多学科团队具有微分解(NUZZO),表面修饰和蛋白质固定(Leckband),生物化/细胞生物学技术(WANG)以及钙粘蛋白生物学(Leckband)和趋化性(WANG)的专业知识。 Nuzzo和Leckband多年来一直在多个项目中合作。 Leckband和Wang正在协作一个涉及钙粘蛋白和干细胞分化的独立项目。 Wang经常建议Leckband小组成员有关细胞工作的实验方案,Wang和Leckband会定期举行联合小组会议。所有三个PI的实验室和办公室都位于相邻的建筑物中。该建议是由PI之间的几次对话引起的。
公共卫生相关性:细胞迁移是组织形成,修复和再生中必不可少的形态发生过程。它还可以推动癌症,智障,动脉粥样硬化和关节炎的疾病进展。在组织中,正常组织和患病组织中的细胞运动涉及细胞运动和细胞粘附的协调调节。细胞运动机制通常是由可溶性生长因子和化学因子触发的,具有细胞间粘附的不稳定。此外,趋化剂和粘附的梯度都被认为可以指导组织中的细胞运动。这是控制趋化性或细胞迁移与细胞 - 细胞粘附的信号之间的相互作用,最终控制了组织的形成和结构完整性。在正常发育和疾病进展中了解这些过程的基础是阐明调节企业互细胞粘附和迁移之间平衡的生物设计规则。尽管这个问题对人类健康非常重要,但这些问题几乎没有得到关注。我们假设当前的知识差距是由于用于研究细胞粘附,迁移和趋化性的当前方法所固有的局限性以及缺乏能够定量评估粘合和扩散信号对细胞行为的影响的方法。这个多学科团队体现了解决这个复杂问题所需的核心能力。具体而言,当前的软光刻,细胞粘附和细胞迁移方面的能力使得能够在固定和扩散的表单序列中定量定义的生化线索,以定义相互调节细胞行为的不同信号的平衡。重要的是,这些设备可以以在体内或标准组织培养形式无法访问的方式对生化信号的定量定义。这种控制水平对于定义以统一或梯度形式的趋化剂的定义至关重要,这些趋化剂破坏了细胞 - 细胞连接以促进迁移。为此,这项拟议的研究将使用这些设备来唯一地量化细胞迁移对粘合剂和可溶性提示模式的反应,或者以个性化或结合序列的顺序来定义趋化性或拮抗性相互作用,从而定义了调节细胞出现的趋化性或粘合性生物化学线索之间的相互作用。我们将将这些图案化工具与活细胞成像结合在一起,直接弥合外部刺激和基本的细胞内生化过程,这些过程是全球细胞反应的基础。这种工程细胞环境的独特互补以及生化过程的实时时空成像应在空间和时间分布的细胞外提示,信号活性区域和单个细胞内蛋白质分布的区域的细胞内配位以及全球细胞反应之间建立因果关系。重要的是,标准生化测定法也无法访问这种实时时空信息。 这些研究产生的知识将与人类健康直接相关,例如,可以鉴定出有效的癌症治疗和预防疗法。此外,如果成功的话,这些方法的一般验证将为进一步研究其他生化因素或环境参数奠定基础 - 作为单个组件或各种组合 - 包括整合素,增长因素,底物僵硬或与人类发展和疾病有关的任何数量的参数。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cadherin recognition and adhesion.
- DOI:10.1016/j.ceb.2012.05.014
- 发表时间:2012-10
- 期刊:
- 影响因子:7.5
- 作者:Leckband, Deborah;Sivasankar, Sanjeevi
- 通讯作者:Sivasankar, Sanjeevi
Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation.
- DOI:10.1152/physrev.00004.2010
- 发表时间:2011-04
- 期刊:
- 影响因子:33.6
- 作者:Niessen CM;Leckband D;Yap AS
- 通讯作者:Yap AS
Biophysics of cadherin adhesion.
- DOI:10.1007/978-94-007-4186-7_4
- 发表时间:2012-01-01
- 期刊:
- 影响因子:0
- 作者:Leckband, Deborah;Sivasankar, Sanjeevi
- 通讯作者:Sivasankar, Sanjeevi
Cadherin point mutations alter cell sorting and modulate GTPase signaling.
钙粘蛋白点突变会改变细胞分类并调节 GTP 酶信号传导。
- DOI:10.1242/jcs.087395
- 发表时间:2012
- 期刊:
- 影响因子:4
- 作者:Tabdili,Hamid;Barry,AdrienneK;Langer,MatthewD;Chien,Yuan-Hung;Shi,Quanming;Lee,KengJin;Lu,Shaoying;Leckband,DeborahE
- 通讯作者:Leckband,DeborahE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deborah E Leckband其他文献
Deborah E Leckband的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deborah E Leckband', 18)}}的其他基金
Finding the right niche:quantifying protein folding stability in materials
找到合适的利基:量化材料中的蛋白质折叠稳定性
- 批准号:
9883022 - 财政年份:2019
- 资助金额:
$ 22.28万 - 项目类别:
Polarization and directed cell movements in engineered cellular environments
工程细胞环境中的极化和定向细胞运动
- 批准号:
7658655 - 财政年份:2009
- 资助金额:
$ 22.28万 - 项目类别:
LATERAL DIFFUSION OF ADHESION PROTEINS ON SUPPORTED BILAYERS
粘附蛋白在支撑双层上的横向扩散
- 批准号:
7600944 - 财政年份:2007
- 资助金额:
$ 22.28万 - 项目类别:
相似国自然基金
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别: