Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
基本信息
- 批准号:10707881
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAgeAreaAssessment toolBayesian NetworkBeliefBone DensityBone TissueCalibrationCessation of lifeCharacteristicsClassificationClinicalDataData SetDeteriorationDiscriminationDiseaseEarly InterventionElectronic Health RecordFemurFractureFutureGoalsGuidelinesIndividualInferiorLifeLogistic RegressionsLongitudinal cohortMachine LearningMenopauseMethodologyMethodsModelingNeckOsteoporosisOsteoporoticOutcomePerformancePopulationPostmenopausePredictive ValueProspective StudiesPublic HealthROC CurveRecommendationRiskRisk AssessmentRisk EstimateRisk FactorsSelf AssessmentSiteSpecificityStratificationTechniquesTestingUnited StatesUnited States Preventative Services Task ForceValidationWomanWomen&aposs Healthage groupagedbonebone fragilitybone lossbone masscandidate selectionchronic paindesigndisabilityelectronic health record systemexperiencefollow-upfracture riskgradient boostinghuman old age (65+)improvedindexinginsightmachine learning modelmachine learning predictionmodel buildingosteoporosis with pathological fractureperformance testspharmacologicpredictive modelingpredictive toolsrandom forestrepositoryrisk predictionscreeningscreening guidelinestool
项目摘要
PROJECT ABSTRACT
Half of all postmenopausal women will experience an osteoporosis-related fracture in their remaining lifetimes.
As these fractures can lead to disability, loss of independence, and death, it is important to identify who is at risk
for early intervention and mitigation. While clinical guidelines support routine osteoporosis screening for women
aged ≥65 years, only selective screening is recommended for younger postmenopausal women aged 50-64
based on the use of risk assessment tools (e.g., OST, FRAX, SCORE). However, we have shown that these
tools – which were not specifically developed for women in this age group – do not differentiate well between
women who do and do not have osteoporosis (based on bone mineral density, BMD) and/or subsequent fracture.
The objective of this project is to explore machine learning (ML) to improve osteoporosis risk assessment in
young postmenopausal women. Prior ML-based analyses for osteoporosis and related fractures exist but are on
non-American populations and/or are of limited size. We will use the large Women's Health Initiative (WHI) Study
(>160,000 individuals from the United States), to develop, validate, and compare different machine learning
approaches (random forests; logistic regression; dynamic belief network, DBN) for younger postmenopausal
women. ML models will be constructed and assessed for two tasks: 1) predicting fracture risk in women aged
50-64 (Aim 1); and 2) predicting osteoporosis (per BMD; Aim 2). In each case, we will build ML models using
existing risk factors from current tools, as well as add additional variables collected from the WHI to identify new
features that may improve predictive power. We will also assess the value of temporal model by building DBNs,
using an individual's past observations to guide predictions. We will compute technical performance metrics
(e.g., sensitivity, specificity, positive predictive value) and conduct error analyses to contrast what (sub)groups
each model (in)correctly identifies. We will also perform sensitivity analyses to ascertain the impact of different
variables on the robustness of the model's predictions. Lastly, we plan to externally validate (Aim 3) the models
from Aims 1 & 2 using electronic health record (EHR) datasets from UCLA and UCSF, investigating the degree
of transportability. Successful execution of this R21 will: 1) develop and test different ML models predicting major
osteoporotic fracture and osteoporosis in US women; 2) identify potential additional variables that inform the risk
of these conditions; and 3) provide insight into areas where such ML-models may be improved through stratifi-
cation and/or future methodological approaches. The results from this R21 will serve as a baseline for a broader
R01 to develop more effective predictive models for fracture and osteoporotic risk.
项目摘要
半数绝经后女性在其余生中将经历骨质疏松症相关的骨折。
由于这些骨折可能导致残疾、丧失独立性和死亡,因此确定哪些人处于危险之中非常重要
进行早期干预和缓解,而临床指南支持对女性进行常规骨质疏松症筛查。
年龄≥65岁,仅建议对50-64岁的年轻绝经后女性进行选择性筛查
基于风险评估工具(例如 OST、FRAX、SCORE)的使用但是,我们已经证明了这些。
工具——并不是专门为这个年龄段的女性开发的——不能很好地区分
患有或未患有骨质疏松症(基于骨矿物质密度,BMD)和/或随后骨折的女性。
该项目的目标是探索机器学习(ML)以改善骨质疏松症风险评估
先前存在基于 ML 的骨质疏松症和相关骨折分析,但仍在进行中。
我们将使用大型妇女健康倡议 (WHI) 研究。
(来自美国的超过 160,000 人),开发、验证和比较不同的机器学习
针对年轻绝经后的方法(随机森林;逻辑回归;动态信念网络,DBN)
将针对两项任务构建和评估 ML 模型:1)预测老年女性的骨折风险。
50-64(目标 1);和 2)预测骨质疏松症(根据 BMD;目标 2)。
现有工具中的现有风险因素,以及添加从 WHI 收集的其他变量来识别新的风险因素
我们还将通过构建 DBN 来评估时间模型的价值。
我们将使用个人过去的观察来计算技术绩效指标。
(例如,敏感性、特异性、阳性预测值)并进行误差分析以对比哪些(子)组
每个模型都正确识别。我们还将进行敏感性分析,以确定不同模型的影响。
最后,我们计划对模型进行外部验证(目标 3)。
目标 1 和 2 使用 UCLA 和 UCSF 的电子健康记录 (EHR) 数据集来调查学位
成功执行此 R21 将:1)开发和测试预测主要内容的不同 ML 模型。
美国女性骨质疏松性骨折和骨质疏松症;2) 确定潜在的额外变量以告知风险
这些条件;3)深入了解可以通过分层改进此类 ML 模型的领域
R21 的结果将作为更广泛的基准。
R01 开发更有效的骨折和骨质疏松风险预测模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Race and Ethnicity and Fracture Prediction Among Younger Postmenopausal Women in the Women's Health Initiative Study.
妇女健康倡议研究中年轻绝经后妇女的种族和民族以及骨折预测。
- DOI:
- 发表时间:2023-07-01
- 期刊:
- 影响因子:39
- 作者:Crandall, Carolyn J;Larson, Joseph C;Schousboe, John T;Manson, JoAnn E;Watts, Nelson B;Robbins, John A;Schnatz, Peter;Nassir, Rami;Shadyab, Aladdin H;Johnson, Karen C;Cauley, Jane A;Ensrud, Kristine E
- 通讯作者:Ensrud, Kristine E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEX BUI其他文献
ALEX BUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEX BUI', 18)}}的其他基金
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10801686 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10473397 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10370048 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10615779 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10655487 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10406058 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10306323 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10523518 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
相似国自然基金
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 14.1万 - 项目类别:
Analysis of Alzheimer's disease studies that feature truncated or interval-censored covariates
对具有截断或区间删失协变量的阿尔茨海默病研究的分析
- 批准号:
10725225 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
- 批准号:
10723570 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Pandemic preparedness for underserved persons in the US: Harnessing data from the RADx-UP consortium to assess public health tools for resource allocation
美国服务不足人群的流行病防范:利用 RADx-UP 联盟的数据评估用于资源分配的公共卫生工具
- 批准号:
10881319 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别: