Application of mucus modulating multipurpose trypsin nanoparticles to overcome the mucus barrier and deliver mitochondria-targeted anticancer drugs in mucinous carcinoma peritonei
应用粘液调节多用途胰蛋白酶纳米颗粒克服粘液屏障并在腹膜粘液癌中递送线粒体靶向抗癌药物
基本信息
- 批准号:10693942
- 负责人:
- 金额:$ 21.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcetylcysteineAmidesAntineoplastic AgentsBromelainsCarcinomaCell DeathCell SurvivalCell membraneChargeColorectal CancerComplexCurative SurgeryCytoprotectionDoseDoxorubicinDrug Delivery SystemsDrug FormulationsDrug KineticsDrug TargetingDrynessEstersFaceFormulationGlycoproteinsGreater sac of peritoneumHistologicIn VitroInstitutionInternationalIntravenousLaboratoriesMalignant neoplasm of appendixMalignant neoplasm of ovaryMediatingMembraneMitochondriaMitomycin CMucin-2 Staining MethodMucinousMucinous NeoplasmMucolyticsMucous MembraneMucous body substanceNanotechnologyNeoplasm MetastasisOligosaccharidesOrganoidsOutcomePathway interactionsPatientsPenetrationPeptide HydrolasesPeptidesPeritonealPermeabilityPharmaceutical PreparationsPolyethylene GlycolsPolymersPositioning AttributeReactive Oxygen SpeciesRecurrenceResearch ProposalsSerumStructureSurfaceTherapeuticTimeTissuesTrypsinTrypsin InhibitorsUnresectableWeightXenograft Modelabsorptionanti-cancerantitumor effectarmbiomaterial compatibilitybiomedical referral centercancer cellchemotherapycytotoxicitydisulfide bondendoplasmic reticulum stressextracellularimprovedin vitro Modelin vivoin vivo Modelintraperitonealintraperitoneal therapymitochondrial membranenanoparticlenovel therapeutic interventionpatient derived xenograft modelpharmacokinetics and pharmacodynamicspreclinical studysafety assessmentsmall moleculesystemic toxicitytherapeutic nanoparticlesthree dimensional cell culturetumorzeta potential
项目摘要
PROJECT ABSTRACT
Mucinous colorectal and appendiceal cancers (MCAC) are unique histologic subtypes that frequently
metastasize to the peritoneal cavity (known as mucinous carcinoma peritonei [MCP]). MCP is frequently
unresectable, responds poorly to standard intravenous chemotherapy, and often recurs after “curative” surgery
with intraperitoneal (IP) chemotherapy, resulting in poor oncologic outcomes. Intraperitoneal chemotherapy
for MCP faces two major challenges. First, MCP is characterized by abundant extracellular mucus that forms
a protective barrier around cancer cells, hindering IP chemotherapeutic drug delivery. We have previously
demonstrated robust mucolysis, in patient-derived in vitro and in vivo models of MCP, using mucolytic drugs
(e.g. bromelain [BRO], N-acetylcysteine [NAC] and trypsin [TRYP]). We also found that the baseline net negative
charge of mucus was significantly increased after mucolysis (ζ-potential in our studies: undigested mucus -1.93
mV; digested mucus -17.2 mV). Second, commonly administered IP drugs for MCP (e.g. doxorubicin [DOX] and
mitomycin C [MITO]) are rapidly absorbed across the peritoneal membrane, resulting in short IP retention time,
low intra-tumoral (IT) penetration, and systemic toxicity. Therapeutic nanoparticle formulations have longer IP
retention and IT penetration than free drugs because of enhanced permeability and retention effect and provide
protection from early degradation and pre-absorption. The aim of this proposal is to leverage nanotechnology
and the significant negative charge of mucus following mucolysis to enhance IP retention, IT penetration, and
delivery of positively charged anticancer drugs in MCP. To this end, we have synthesized mucus modulating
multipurpose TRYP nanoparticles (MTN) comprised of three components; (a) a core of negatively charged TRYP
clusters, consisting of 4 arms of polyethylene glycol (PEG) and TRYP, for enzymatic mucolysis and drug delivery;
(b) nanoparticle-conjugated NAC, for mucus disruption and mucoadhesion; and (c) nanoparticle-loaded and
positively-charged mitochondria-targeted anticancer drugs (mitocans), specifically triphenyl phosphonium (TPP)-
doxorubicin (TPP-DOX) and TPP-mitomycin C (TPP-MITO), for anti-cancer effect. We hypothesize that our
MTN will disrupt the structural integrity of mucus, enhance IP/IT retention and penetration of loaded drugs, and
deliver positively charged TPP-DOX or TPP-MITO across a progressively higher negative charge-gradient from
the nanoparticle surface to digested mucus to mitochondria (ζ-potential: digested mucus -17.2 mV; cell
membranes -30 to -60 mV; mitochondrial membranes -160 mV). Our research proposal provides a novel
therapeutic strategy to overcome the cytoprotective mucus barrier and improve drug delivery in MCP. It is
expected that the proposed MTN will provide a pharmacokinetic and pharmacodynamic advantage over non-
nanocarrier formulations of the drugs. Notably, the proposed MTN are synthesized from biocompatible and
biodegradable materials, increasing their translatability; TRYP is a naturally synthesized mammalian protease
capable of hydrolyzing peptide-, amide-, and ester-bonds, and does not digest living tissue since both serum
and viable cells contain TRYP inhibitors; and TPP-MITO/TPP-DOX, targeted to negatively charged mucus and
mitochondria, are newly developed in our laboratory and significantly effective against MCP in our preliminary
studies. This approach is likely to be applicable for other mucinous tumors (e.g. mucinous ovarian cancer) that
secrete abundant extracellular mucus. We are uniquely positioned to conduct the preclinical studies in this
proposal given that we have already developed in vitro 3D cultures and in vivo xenograft models of MCAC/MCP
and our institution is one of the major international referral centers for the management of patients with MCP.
项目摘要
粘液性结直肠癌和阑尾癌 (MCAC) 是独特的组织学亚型,经常
经常转移至腹膜腔(称为腹膜粘液癌 [MCP])。
不可切除,对标准静脉化疗反应不佳,并且在“治愈”手术后经常复发
腹膜内(IP)化疗,导致肿瘤学结果不佳。
MCP面临两大挑战:首先,MCP的特点是形成丰富的细胞外粘液。
癌细胞周围的保护屏障,阻碍腹膜内化疗药物的输送。
使用粘液溶解药物,在源自患者的 MCP 体外和体内模型中实现强大的粘液溶解作用
(例如菠萝蛋白酶[BRO]、N-乙酰半胱氨酸[NAC]和胰蛋白酶[TRYP])我们还发现基线净阴性。
粘液溶解后粘液电荷显着增加(我们研究中的 z 电位:未消化的粘液 -1.93
mV;消化粘液-17.2 mV) 其次,用于 MCP 的常用腹腔注射药物(例如阿霉素 [DOX] 和)。
丝裂霉素 C [MITO])可通过腹膜快速吸收,导致 IP 保留时间短,
肿瘤内 (IT) 渗透性低,且治疗性纳米颗粒制剂具有更长的 IP 时间。
保留和 IT 渗透比游离药物由于增强的渗透性和保留效果而提供
防止早期降解和预吸收 该提案的目的是利用纳米技术。
粘液溶解后粘液的显着负电荷可增强 IP 保留、IT 渗透和
在 MCP 中递送带正电的抗癌药物 为此,我们合成了粘液调节剂。
多用途 TRYP 纳米颗粒 (MTN) 由三种成分组成:(a) 带负电的 TRYP 核心;
簇,由 4 个聚乙二醇 (PEG) 和 TRYP 臂组成,用于酶促粘液溶解和药物输送;
(b) 纳米颗粒缀合的 NAC,用于粘液破坏和粘膜粘附;以及 (c) 纳米颗粒负载和
带正电荷的线粒体靶向抗癌药物(mitocans),特别是三苯基膦(TPP)-
阿霉素(TPP-DOX)和TPP-丝裂霉素C(TPP-MITO),我们的抗癌作用。
MTN 将破坏粘液的结构完整性,增强 IP/IT 保留和负载药物的渗透,并且
在逐渐升高的负电荷梯度上提供带正电荷的 TPP-DOX 或 TPP-MITO
纳米粒子表面消化的粘液到线粒体(ζ电位:消化的粘液-17.2 mV;细胞
我们的研究方案提供了一种新颖的方法:线粒体膜-30至-60 mV;线粒体膜-160 mV。
克服细胞保护性粘液屏障并改善 MCP 药物输送的治疗策略。
预计所提议的 MTN 将提供比非 MTN 更好的药代动力学和药效学优势
值得注意的是,所提出的 MTN 是由生物相容性和纳米载体合成的。
可生物降解材料,增加其可翻译性;TRYP 是一种天然合成的哺乳动物蛋白酶;
能够水解肽键、酰胺键和酯键,并且不消化活组织,因为血清
活细胞含有 TRYP 抑制剂;和 TPP-MITO/TPP-DOX,针对带负电的粘液和
线粒体是我们实验室新开发的,在我们的初步研究中对 MCP 显着有效
该方法可能适用于其他粘液性肿瘤(例如粘液性卵巢癌)。
我们具有独特的优势来开展这方面的临床前研究。
鉴于我们已经开发了 MCAC/MCP 的体外 3D 培养物和体内异种移植模型,因此提出建议
我们的机构是管理 MCP 患者的主要国际转诊中心之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Haroon Asif Choudry其他文献
Mohammad Haroon Asif Choudry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Haroon Asif Choudry', 18)}}的其他基金
Application of mucus modulating multipurpose trypsin nanoparticles to overcome the mucus barrier and deliver mitochondria-targeted anticancer drugs in mucinous carcinoma peritonei
应用粘液调节多用途胰蛋白酶纳米颗粒克服粘液屏障并在腹膜粘液癌中递送线粒体靶向抗癌药物
- 批准号:
10510536 - 财政年份:2022
- 资助金额:
$ 21.85万 - 项目类别:
Application of mucus modulating multipurpose bromelain nanoparticles to overcome the mucus barrier in appendiceal pseudomyxoma peritonei
应用粘液调节多用途菠萝蛋白酶纳米颗粒克服阑尾腹膜假粘液瘤粘液屏障
- 批准号:
10457440 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
Application of mucus modulating multipurpose bromelain nanoparticles to overcome the mucus barrier in appendiceal pseudomyxoma peritonei
应用粘液调节多用途菠萝蛋白酶纳米颗粒克服阑尾腹膜假粘液瘤粘液屏障
- 批准号:
10290386 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
Application of Mucolytic Therapy in Patient-Derived Models of Pseudomyxoma Peritonei
粘液溶解疗法在腹膜假粘液瘤患者来源模型中的应用
- 批准号:
9808331 - 财政年份:2019
- 资助金额:
$ 21.85万 - 项目类别:
相似国自然基金
乙酰半胱氨酸通过PI3K/AKT/mTOR通路增强CAR-CIK的抗肿瘤作用和机制研究
- 批准号:82303762
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N-乙酰半胱氨酸介导线粒体SIRT3活化促进老年骨质疏松性骨修复的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于自噬研究N-乙酰-L-半胱氨酸促进毕赤酵母分泌重组猪促卵泡素的作用机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N-乙酰半胱氨酸介导成骨细胞circRNA_003251表达促进骨修复的机制研究
- 批准号:82072442
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
N-乙酰半胱氨酸调控山羊繁殖机能的分子机制研究
- 批准号:
- 批准年份:2020
- 资助金额:36 万元
- 项目类别:地区科学基金项目
相似海外基金
Application of mucus modulating multipurpose trypsin nanoparticles to overcome the mucus barrier and deliver mitochondria-targeted anticancer drugs in mucinous carcinoma peritonei
应用粘液调节多用途胰蛋白酶纳米颗粒克服粘液屏障并在腹膜粘液癌中递送线粒体靶向抗癌药物
- 批准号:
10510536 - 财政年份:2022
- 资助金额:
$ 21.85万 - 项目类别:
Studies on the impact of acetyl-cysteine on metabolism
乙酰半胱氨酸对代谢影响的研究
- 批准号:
10574934 - 财政年份:2022
- 资助金额:
$ 21.85万 - 项目类别:
Application of mucus modulating multipurpose bromelain nanoparticles to overcome the mucus barrier in appendiceal pseudomyxoma peritonei
应用粘液调节多用途菠萝蛋白酶纳米颗粒克服阑尾腹膜假粘液瘤粘液屏障
- 批准号:
10457440 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
Application of mucus modulating multipurpose bromelain nanoparticles to overcome the mucus barrier in appendiceal pseudomyxoma peritonei
应用粘液调节多用途菠萝蛋白酶纳米颗粒克服阑尾腹膜假粘液瘤粘液屏障
- 批准号:
10290386 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
Thioredoxin mimicry: novel treatment of toxicant-mediated inhalational lung injur
硫氧还蛋白拟态:毒物介导的吸入性肺损伤的新治疗方法
- 批准号:
8735374 - 财政年份:2014
- 资助金额:
$ 21.85万 - 项目类别: