Anterior Cingulate Cortex preferentially drives dorsal CA1 deep neuronal activity during sharp-wave ripples for memory consolidation
前扣带皮层在锐波波动期间优先驱动背侧 CA1 深层神经元活动以巩固记忆
基本信息
- 批准号:10751694
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAnatomyAnteriorAutomobile DrivingBehaviorBrainCellsCharacteristicsCommunicationDataDementiaDevelopmentDimensionsDorsalElectrophysiology (science)EventExhibitsFreezingFunctional disorderFutureHippocampusHourImpairmentInterventionLearningLinear ModelsMediatorMedicalMemoryMemory DisordersNatureNeuronsPathologicPathway interactionsPerformancePhasePlayPopulationPost-Traumatic Stress DisordersProcessPropertyResearch PersonnelRoleShockSiteSleepSlow-Wave SleepSystemTechniquesTestingTherapeuticTherapeutic InterventionTimeTrainingWakefulnesscingulate cortexconditioned fearexcitatory neuronexperienceextracellularfear memoryhippocampal pyramidal neuronin vivoindependent component analysislong term memorymemory acquisitionmemory consolidationmemory encodingmemory processneuralneural networknoveloptogeneticsrecruitresponsesuccesstherapeutic development
项目摘要
Project Summary:
Memory consolidation is an indispensable function for everyday experiences that becomes compromised in
many prevalent memory disorders such as post-traumatic stress disorder and dementia. Understanding the
underlying process of memory consolidation is essential for the development of therapeutics and treatment
interventions for pervasive memory disorders. Systems consolidation, memory consolidation across neural
networks, involves the transformation of impermanent, hippocampus-dependent memories, into permanent
long-term memories stored throughout cortical regions. During this consolidation process, sharp-wave ripples
(SPWs), neural oscillations originating from the dorsal CA1 of the hippocampus during slow wave sleep
(SWS), have emerged as a key mediator. These oscillations facilitate systems consolidation through the
reactivation of hippocampal and cortical neurons previously active during wakefulness. Recently, researcher
have identified two anatomically distinct CA1 pyramidal sublayers that differ in function during SPWs:
superficial and deep. Superficial neurons (CA1sup) display more stable firings rates exhibiting little change in
response to learning, whereas deep neurons (CA1deep) are less stable exhibiting dynamic changes to
learning. While these differences have been uncovered, much remains unknown on how sublayers are
selectively recruited during SPWs. The anterior cingulate cortex (ACC), a cortical region involved long-term
memory, emerges as a possible candidate in driving CA1 activity. The ACC exhibits increased activity
immediately preceding SPWs and dCA1 neuronal firings, suggesting a potential ACC → dCA1 influence. Our
results revealed that ACC neural activity immediately preceding SPWs (~200ms prior) preferentially predicts
CA1deep neuron activity during SPWs. Prediction success increases following learning, suggesting a role of
ACC → CA1deep communication in learning. Additionally, we show that stimulation of ACC excitatory neurons
specifically increases the activity of CA1deep, but not CA1sup, during SWS. Given these findings, I
hypothesize that ACC neurons selectively communicate with CA1deep activity during SPWs post-learning, and
this communication is necessary for consolidation of newly-acquired memories. I will test this hypothesis
through the following two aims. Aim 1 will utilize dual-site extracellular in vivo electrophysiology to determine
how the ACC and dCA1 neurons communicate during SPW events for memory consolidation. Aim 2 will
implement closed-loop optogenetics to investigate the causal role ACC → CA1deep communication during
SPWs in memory consolidation. Findings from this proposal will advance our understanding of systems
consolidation and how the brain stores long-term memories. Results from this study would lay the framework
for the development of future therapeutic interventions targeted towards memory disorders.
项目摘要:
记忆整合是每天经历的必不可少的功能,该功能被妥协
许多流行的记忆障碍,例如创伤后应激障碍和痴呆症。了解
记忆巩固的基本过程对于发展和治疗的发展至关重要
普遍存在记忆障碍的干预措施。系统合并,中性跨内存的内存合并
网络涉及无常的海马依赖性记忆的转化,
长期存储在整个皮质区域。在此整合过程中,锋利的波浪
(SPW),慢波睡眠期间来自海马的背侧CA1的神经振荡
(SWS)已成为关键调解人。这些振荡通过
先前在清醒期间活跃的海马和皮质神经元的重生。最近,研究员
已经确定了两个在SPWS期间功能不同的解剖学上不同的CA1锥体子层:
肤浅而深层。表面神经元(CA1SUP)显示出更稳定的射击率,几乎没有变化
对学习的反应,而深神经元(Ca1deep)较不稳定,表现出动态变化
学习。尽管这些差异已经被发现,但对于子层的方式仍然未知
在SPWS期间有选择地招募。前扣带回皮质(ACC),一个皮质区域涉及长期
记忆是驱动CA1活动的可能候选者。 ACC表现出增加的活动
紧接在SPW和DCA1神经元发射之前,表明潜在的ACC→DCA1影响。我们的
结果表明,在SPW之前紧接的ACC神经活动(先前约200ms)优先预测
SPWS期间的Ca1Deep神经元活性。学习后的预测成功增加了,这表明
ACC→学习中的Ca1Deep沟通。此外,我们表明刺激ACC兴奋性神经元
在SWS期间,特别增加了Ca1deep(而不是Ca1sup)的活性。有了这些发现,我
假设ACC神经元在学习后SPW中选择性地与CA1DEEP活动进行交流,并且
这种通信对于合并新获得的记忆是必要的。我将检验这个假设
通过以下两个目标。 AIM 1将利用双位点细胞外体内电生理学来确定
ACC和DCA1神经元在SPW事件中如何进行记忆巩固。 AIM 2意志
实施了闭环光遗传学,以研究因果关系→Ca1deep通信
记忆合并中的SPW。该提案的发现将提高我们对系统的理解
整合以及大脑如何存储长期记忆。这项研究的结果将构成框架
为了开发针对记忆障碍的未来治疗干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arron Franklin Hall其他文献
Arron Franklin Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
- 批准号:82302142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型电化学发光传感体系及其用于感染性疾病多指征监测的研究
- 批准号:82373831
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
纤溶酶原结合蛋白Tetranectin通过抑制梭形菌的肠道内定植介导肠黏膜炎症相关疾病发展的机制研究
- 批准号:82370540
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
左心内皮细胞Piezo1激活EDN1/HIF通路诱导左心疾病所致肺动脉高压的机制研究
- 批准号:82300067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于睡眠期间血氧饱和度探讨室内超细颗粒物短期暴露与慢性阻塞性肺疾病患者心肺健康的关联及其机制
- 批准号:22376005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
The Alzheimer's Disease Tau Platform Clinical Trial
阿尔茨海默病 Tau 平台临床试验
- 批准号:
10655872 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Using Photobiomodulation to Alleviate Brain Hypoperfusion in Alzheimer's Disease
利用光生物调节缓解阿尔茨海默氏病的大脑灌注不足
- 批准号:
10656787 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
GPR39 as a Therapeutic Target in Aging-Related Vascular Cognitive Impairment and Dementia
GPR39 作为衰老相关血管认知障碍和痴呆的治疗靶点
- 批准号:
10734713 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Evaluating a novel, orally-active TREM2-targeting drug in AD
评估一种新型口服活性 TREM2 靶向药物治疗 AD 的效果
- 批准号:
10735206 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: