Investigating how long-term signals modulate brainstem satiation circuits
研究长期信号如何调节脑干饱足回路
基本信息
- 批准号:10752497
- 负责人:
- 金额:$ 4.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAdultAreaAutomobile DrivingBehaviorBrainBrain StemCellsCholecystokininCranial NervesCuesEatingElementsExhibitsFastingFeedbackFeeding behaviorsFoodGastrointestinal tract structureGlucagonGlutamatesHormonesHungerHypothalamic structureInfusion proceduresIngestionLeptinLogicMeasuresMusNeuronsNucleus solitariusNutrientObesityOral IngestionPeptidesPhasePhotometryPopulationProlactin-Releasing HormoneRegulationReportingRoleSatiationSensorySignal TransductionStarvationStructureStructure of nucleus infundibularis hypothalamiSystemTaste PerceptionTestingTimeWorkawakecell typeenergy balanceexperimental studyfeedingin vivoin vivo evaluationmature animalneonatal miceneonateneuraloptogeneticspreventresponsesensory feedback
项目摘要
Project Abstract:
The size of a meal is carefully regulated to prevent over- or under-feeding. Direct control of meal size is
attributed by brainstem areas, such as the caudal nucleus of the solitary tract (cNTS), that directly receive
short-term sensory feedback from the GI tract during feeding. In contrast, the indirect controls, which include
hypothalamic circuits and leptin, are hypothesized to encode long-term energy balance and regulate meal
termination by modulating the potency of these short-term signals sensed in the brainstem. Interactions
between these long-term and short-term systems are critical for the control of food intake, but how it is
encoded in the dynamics of the underlying brainstem circuits remains unknown. The cNTS contains many cell
types that are involved in controlling food intake. Among these cell types, prolactin releasing hormone (PRLH)
and glucagon (GCG) neurons are particularly important for meal termination. In my recent studies, I performed
the first neural recordings of these two cell types in awake behaving mice. I found unexpectedly that these cells
were rapidly activated at the start of a meal by feedforward signals such as taste. These technical and
conceptual advances create an opportunity for me to investigate the longstanding question of how signals of
long-term energy balance modulate brainstem circuits to control meal termination. I propose here to address
this question by investigating how two regulators of long-term energy balance – Agouti-related peptide (AgRP)
neurons and leptin – modulate PRLH or GCG neuron dynamics or their control of feeding behavior. Together
these results will reveal how long-term systems modulate brainstem circuits to regulate meal size, which is an
important determinant of overall food intake and can be dysregulated in conditions like obesity.
项目摘要:
餐点的大小经过仔细的规则,以防止过度喂食。
由脑干区域(例如孤立区的尾核(CNT))归因于直接接收的
相反,胃肠道的短期感觉反馈。
下丘脑电路和瘦素
通过调节脑干中的TheShess Short-Taterm信号的终止
在这些长期和短期系统之间对OFOD的控制是批判性的,但是它是如何的
在基础脑干电路的动力学中编码仍然未知。
在这些细胞类型中涉及的食物摄入量的类型。
胰高血糖素(GCG)神经元在我最近的研究中尤为重要。
这两种细胞类型的首次神经记录在醒着的行为小鼠中。
在餐食开始时,通过味道(例如味道)迅速激活
概念上的进步为我创造了一个机会,以调查一个长期以来的信号的问题
长期能量平衡模块化脑干电路以控制饮食终止。
通过调查两个长期能量平衡与阿古蒂相关肽(AGRP)的常客如何
神经元和瘦素 - 模块化PRLH或GCG神经元动力学或它们对喂养行为的控制
这些结果将揭示长期系统模块化脑干电路如何适用于常规膳食大小,这是
总体食物摄入的重要决定因素,在敬拜等条件下可能会失调。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Truong Ly其他文献
Truong Ly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Deciphering Mechanisms of Astrocyte-BBB Interaction in Normal and Ischemic Stroke
解读正常和缺血性中风中星形胶质细胞-BBB相互作用的机制
- 批准号:
10585849 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Genetic Dissection of Stress Responses in Shwachman-Diamond Syndrome
什瓦赫曼-戴蒙德综合征应激反应的基因剖析
- 批准号:
10594366 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Elucidating signaling networks in Anterior Segment development, repair and diseases
阐明眼前节发育、修复和疾病中的信号网络
- 批准号:
10718122 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别: