Solving cell-type specific differences of the Wnt-directed gene regulatory network in Hydra vulgaris.
解决水螅中 Wnt 导向基因调控网络的细胞类型特异性差异。
基本信息
- 批准号:10751675
- 负责人:
- 金额:$ 4.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-03 至 2025-07-02
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAdultAnimalsAtlasesBindingCellsChIP-seqCnidariaComplexDataDevelopmentDevelopmental BiologyDevelopmental GeneDevelopmental ProcessDiseaseEctodermEndodermEpithelial CellsGene ExpressionGenesGenetic TranscriptionGoalsHeadHomeoboxLigandsMalignant NeoplasmsMediatingModelingMolecularMorphologyMusOralOrganismOutcomeOutputPathway interactionsPatternProteinsRNA InterferenceRegulationResolutionRoleSignal PathwaySignal TransductionSortingSpecific qualifier valueSystemTestingTranscriptional ActivationWNT Signaling PathwayWorkbeta catenincell typecombinatorialdevelopmental diseasedirected differentiationexperimental studygene regulatory networkknock-downoral cavity epitheliumresponsesingle-cell RNA sequencingtranscription factortranscriptome sequencing
项目摘要
A fundamental question of developmental biology is to understand how a limited number of signaling pathways
direct the specification of many cell types. One such signaling pathway is the canonical Wnt signaling pathway,
which is highly conserved across animals, plays a role in a myriad of developmental processes, and its
dysregulation is common in disease. To direct different developmental outcomes, Wnt signaling must activate
different gene regulatory networks (GRNs) in different contexts. To reveal general principles of how Wnt ligands
can activate unique GRNs, I will use Hydra vulgaris to discover how two distinct cell types uniquely respond to
the Wnt signaling pathway. Hydra offer several advantages for studying Wnt directed-GRNs: 1) Hydra is a
relatively simple organism and we have molecularly and spatially defined all cell types and 2) the adult Hydra is
in a constant state of development such that all developmental pathways, including the Wnt-directed pathways,
are continuously active. Wnt signaling is high at Hydra’s oral end (i.e., the head) and directs the differentiation
of multiple distinct oral cell fates. The principal effect of canonical Wnt signaling is the stabilization of the beta-
catenin (Bcat) protein, which together with its binding partner TCF activates transcription of target genes. To
activate target gene expression in specific developmental contexts, Bcat/TCF must work in a combinatorial
fashion with other TFs. However, it is largely unknown what TFs are facilitating the activation of Wnt targets and
whether these interactions are conserved across species and during disease. Based on my preliminary data,
I hypothesize that ectodermal Homeobox TFs and endodermal bHLH TFs work in a combinatorial manner
with Bcat/TCF to direct cell-type specific GRN modules in Hydra. Towards testing this hypothesis, I will use
ChIP-seq to identify the cell-type specific direct targets of Bcat/TCF in the two oral epithelial cell types of Hydra
(ectoderm and endoderm) (Aim 1). I will then use our Hydra single cell Atlas to determine the expression pattern
of the direct targets. To determine if direct targets are co-regulated by Homeobox or bHLH TFs, I will knockdown
these TFs in the epithelial cells to test if they are required for specification. I will then identify the Wnt target
genes that also require these TFs for proper expression by conducting RNA-seq on the knockdown Hydra (Aim
2). Finally, I will perform unbiased approaches to identify additional co-regulating TFs for functional testing (Aim
3), which will also provide alternative hypotheses if needed. Upon completion of this project, I will have generated
a comprehensive list of the primary targets of Bcat/TCF in Hydra and potentially have discovered a role for
Homeobox and bHLH TFs in differentially regulating these primary targets. ChIP experiments conducted in mice,
have shown that Bcat can bind specific Homeobox TFs to control target gene expression in different
developmental contexts. Therefore, my results could suggest a deeply conserved role for Homeobox TFs in
regulating different Wnt targets in different developmental contexts from cnidarians to bilaterians.
发育生物学的一个基本问题是了解有限数量的信号通路如何
指导许多细胞类型的规范的一种信号传导途径是典型的 Wnt 信号传导途径,
它在动物中高度保守,在无数的发育过程中发挥着作用,其
失调在疾病中很常见。为了指导不同的发育结果,Wnt 信号传导必须激活。
不同背景下的不同基因调控网络 (GRN) 揭示 Wnt 配体如何发挥作用的一般原理。
可以激活独特的 GRN,我将使用普通水螅来发现两种不同的细胞类型如何独特地响应
Wnt 信号通路为研究 Wnt 定向 GRN 提供了几个优势:1) Hydra 是一种
相对简单的生物体,我们在分子和空间上定义了所有细胞类型,2)成年水螅是
处于持续的发育状态,使得所有发育途径,包括 Wnt 定向途径,
Wnt 信号在水螅的口端(即头部)持续活跃并指导分化。
经典 Wnt 信号传导的主要作用是 β- 的稳定。
连环蛋白 (Bcat) 蛋白,与其结合伙伴 TCF 一起激活靶基因的转录。
在特定的发育环境中激活靶基因表达,Bcat/TCF 必须以组合方式发挥作用
然而,目前尚不清楚哪些 TF 能够促进 Wnt 靶标的激活和
根据我的初步数据,这些相互作用在物种间和疾病期间是否保守。
我发现外胚层同源框 TF 和内胚层 bHLH TF 以组合方式发挥作用
为了测试这个假设,我将使用 Bcat/TCF 来指导 Hydra 中的细胞类型特定 GRN 模块。
ChIP-seq 用于识别 Hydra 两种口腔上皮细胞类型中 Bcat/TCF 的细胞类型特异性直接靶标
(外胚层和内胚层)(目标 1)然后我将使用我们的 Hydra 单细胞图谱来确定表达模式。
为了确定直接目标是否受到同源盒或 bHLH TF 的共同调控,我将击倒。
上皮细胞中的这些 TF 来测试它们是否是规范所必需的,然后我将确定 Wnt 靶点。
通过对敲低 Hydra 进行 RNA 测序,也需要这些 TF 才能正确表达的基因(目标
2).最后,我将采用公正的方法来确定用于功能测试的其他共同调节 TF(目标
3),如果需要的话,我还将提供替代假设。
Bcat/TCF 在 Hydra 中的主要目标的完整列表,并可能发现了其作用
在小鼠中进行的同源框和 bHLH TF 差异调节这些主要靶标的实验。
研究表明,Bcat 可以结合特定的同源盒转录因子 (Homeobox TF) 来控制不同细胞中靶基因的表达。
因此,我的结果可能表明同源框转录因子在发育中具有高度保守的作用。
从刺胞动物到两侧对称动物,在不同的发育背景下调节不同的 Wnt 靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hannah Morris Little其他文献
Hannah Morris Little的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
- 批准号:
10581192 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
- 批准号:
10568344 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别: