Investigating telomerase dynamics in live cells at a single-molecule level
在单分子水平上研究活细胞中的端粒酶动力学
基本信息
- 批准号:10753326
- 负责人:
- 金额:$ 42.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgingBacteriophagesBase PairingBiochemicalBiologyCatalytic DomainCell AgingCell NucleusCell ProliferationCellsCellular biologyChromosomal StabilityChromosomesCrowdingCytoplasmic GranulesDNADataDevelopmentEngineeringEnsureEnzymesEukaryotic CellFutureGeneticGoalsHumanImageLabelLengthLigationLightLinkLongevityMS2 coat proteinMaintenanceMalignant NeoplasmsMechanicsMembraneMethodologyOrganellesPhasePhotobleachingPhysiologicalPreventionProcessProteomeProteomicsRNARNA-Directed DNA PolymeraseRegulationRibonucleoproteinsRoleSystemTEL1 GeneTelomeraseTelomerase RNA ComponentTelomere MaintenanceTestingTumor SuppressionUntranslated RNAVisualizationWorkYeastscancer cellcancer therapycell fixingcell growth regulationdesignexperimental studyfluorophoregenetic approachgenome integrityimage visualizationimaging modalityinnovationmolecular imagingnovelphotoactivationpreventrecruitsingle moleculestemsuperresolution imagingtelomeretrafficking
项目摘要
Abstract:
Eukaryotic cells solve the end-replication and end-protection problems through the addition
of telomere sequences to the ends of chromosomes. Proper regulation of telomere length is
critical for genome integrity, regulation of cellular lifespan, aging, and cancer. Over the years,
genetic and biochemical studies have shed an enormous amount of light on how this process is
controlled. However, the cell biology of this process in the crowded nucleus remains poorly
understood, and the timing, dynamics, and spatial coordination of telomere extension are
unknown. To address these gaps in our understanding, we will exploit the MS2 tagging system
and Halo-fluorophore to visualize single molecules of endogenous telomerase in live cells. Here,
we will decipher discrete and critical steps as hTR traffics from Cajal bodies to telomeres.
Contrary to earlier FISH data in fixed cells, our preliminary data using diffraction-limited and
super-resolution imaging modalities combined with single-molecule FISH show that hTR is
broadly distributed throughout the nucleus. At telomeres, we show that following TPP1-driven
recruitment, stable interactions are established between the enzyme and its substrate by
RNA:DNA base pairing. Our goal is to apply photoactivation and photobleaching experiments to
test the role of the catalytic subunit, hTERT, in the gating of hTR between the Cajal bodies and
telomeres. In addition, we will engineer a short telomere to depict telomerase dynamics at
critical telomeres that need to be elongated. Lastly, we will perform a proximity-based labeling
and purification methodology to investigate the factors that control key steps of telomerase
trafficking to short telomeres. All in all, our innovative approach offers a detailed view of the
precise mechanics of telomere extension at physiological timescales and opens many future
avenues for the study of the link between telomere maintenance and aging as well as cancer.
抽象的:
真核细胞通过添加解决末端复制和末端保护问题
端粒序列到染色体末端。端粒长度的正确调节是
对于基因组完整性、细胞寿命调节、衰老和癌症至关重要。历年,
遗传和生化研究为这一过程的发生提供了大量线索
受控。然而,在拥挤的细胞核中这一过程的细胞生物学仍然很差
端粒延伸的时间、动态和空间协调是
未知。为了解决我们理解中的这些差距,我们将利用 MS2 标记系统
和 Halo 荧光团以可视化活细胞中内源端粒酶的单分子。这里,
我们将破译 hTR 从卡哈尔体到端粒的离散且关键的步骤。
与早期固定细胞中的 FISH 数据相反,我们使用衍射极限和
超分辨率成像方式结合单分子 FISH 表明 hTR
广泛分布于整个细胞核。在端粒方面,我们表明遵循 TPP1 驱动
通过招募,酶与其底物之间建立稳定的相互作用
RNA:DNA 碱基配对。我们的目标是将光活化和光漂白实验应用于
测试催化亚基 hTERT 在 Cajal 小体和 hTR 门控中的作用
端粒。此外,我们将设计一个短端粒来描述端粒酶动力学
需要延长的关键端粒。最后,我们将执行基于邻近度的标记
和纯化方法来研究控制端粒酶关键步骤的因素
贩运到短端粒。总而言之,我们的创新方法提供了详细的视图
端粒在生理时间尺度上延伸的精确机制,开辟了许多未来
研究端粒维持与衰老以及癌症之间联系的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pascal Chartrand其他文献
Pascal Chartrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
KIAA1429介导MFAP4-m6A甲基化修饰在紫外线诱导皮肤光老化中的作用和机制研究
- 批准号:82373461
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Exploiting sex-dependent brain injury response for nanoparticle therapeutics
利用性别依赖性脑损伤反应进行纳米颗粒治疗
- 批准号:
10320959 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Exploiting sex-dependent brain injury response for nanoparticle therapeutics
利用性别依赖性脑损伤反应进行纳米颗粒治疗
- 批准号:
10532166 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Lysterases as first-in-class prophylactic topical antimicrobials to prevent postsurgical shoulder infections
莱斯特酶作为一流的预防性局部抗菌剂,可预防术后肩部感染
- 批准号:
10080363 - 财政年份:2020
- 资助金额:
$ 42.36万 - 项目类别:
Discovery of therapeutic nanobodies targeting the G protein-coupled receptors in the brain for the treatment of Alzheimer Disease
发现针对大脑中 G 蛋白偶联受体的治疗性纳米抗体可用于治疗阿尔茨海默病
- 批准号:
9910106 - 财政年份:2019
- 资助金额:
$ 42.36万 - 项目类别:
Viral burden and systemic inflammation as biomarkers for chronic disease and frailty in aging
病毒负荷和全身炎症作为慢性疾病和衰老衰弱的生物标志物
- 批准号:
10153615 - 财政年份:2018
- 资助金额:
$ 42.36万 - 项目类别: