Identifying and Targeting Master Regulators of Drug Resistance in Lung Adenocarcinoma through Network Analysis of Tumor Transcriptomic Data
通过肿瘤转录组数据的网络分析识别和靶向肺腺癌耐药性的主调节因子
基本信息
- 批准号:10676216
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:A549AlgorithmsAntineoplastic AgentsBiologicalBiological MarkersCLIA certifiedCancer EtiologyCancer cell lineCell LineCellsCessation of lifeChestClinical OncologyClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsComputational BiologyDNA Sequence AlterationDataDevelopmentDiagnosisDiseaseDrug resistanceEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorFDA approvedFellowshipGene ExpressionGenetic TranscriptionGenomicsHematologyHistologicHospitalsImmune checkpoint inhibitorImmunocompetentIn VitroInternal MedicineLaboratoriesLung AdenocarcinomaMachine LearningMalignant neoplasm of lungMeasuresMedicalMedical OncologyMedical centerMethodsModalityMutateNew YorkOncogenicOncologistOncoproteinsPathway AnalysisPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhenotypePhysiciansPresbyterian ChurchProtein-Serine-Threonine KinasesProteinsQuality of lifeResearch Project GrantsResidenciesResistanceScientistSerineStatistical MethodsSurgeonSystems BiologyTechnologyTrainingTranscription Regulatory ProteinTranslational ResearchTumor MarkersTumor Suppressor ProteinsTyrosine Kinase InhibitorUnited StatesUniversitiesUpdateWorkcancer gene expressioncancer subtypescareerclinical trainingclinically actionablecohortcollegecomputer studiesdriver mutationdrug sensitivitygenomic biomarkerhigh throughput analysisimmunohistochemical markersimprovedin silicoin vivoknock-downmachine learning classifiermachine learning predictionmortalitymouse modelmutantnext generation sequencingnovelpatient derived xenograft modelpharmacologicpre-doctoralprecision oncologyprognostic valueprogramsreconstructionresponsesingle-cell RNA sequencingstandard of caresuccesssynergismtargeted treatmenttranscription regulatory networktranscriptomicstreatment strategytumor
项目摘要
Project Summary/Abstract
Lung cancer, the leading cause of cancer-related mortality in the United States, is responsible for more than
100,000 deaths each year. The treatment of metastatic lung adenocarcinoma (LUAD), the most common
histological subtype of lung cancer, has improved substantially in recent decades through the advent of targeted
therapy for tumors with oncogenic driver mutations and immune checkpoint inhibitors for those without. However,
up to 50% of metastatic LUAD tumors will not respond to standard-of-care antineoplastic therapy. Previous
precision oncology efforts to discover genomic or immunohistochemical biomarkers of LUAD tumor drug
sensitivity have achieved limited success. To remedy these shortcomings, we propose to leverage a translational
systems biology approach to identify and target the biological determinants of drug resistance in LUAD through
network analysis of tumor transcriptomic data. Due to advances in computational biology and next-generation
sequencing technologies, the dynamic expression of genes within each patient’s LUAD tumor may be accurately
measured, providing a novel window for the identification of the key transcriptional regulatory proteins which
initiate and maintain drug-resistant tumor phenotypes (i.e. Master Regulators). The systematic identification of
Master Regulator proteins can be achieved with Non-parametric analytical Rank-based Enrichment Analysis
(NaRnEA), a newly developed statistical method capable of leveraging context-specific transcriptional regulatory
networks to extract highly mechanistic information from LUAD tumor transcriptomic data for in silico precision
oncology, thus overcoming the limitations of previous genomic and immunohistochemical approaches. NaRnEA-
inferred activity of Master Regulator proteins which coordinate resistance to targeted therapy will be leveraged
for the development of a transcriptomic machine learning biomarker of drug-sensitivity. Additionally, one-of-a-
kind perturbational gene expression profiles for >400 FDA-approved and investigational compounds in the LUAD
cell line NCIH1793 will be interrogated to identify drugs capable of targeting these Master Regulators of drug-
resistance using the OncoTreat algorithm, a novel systems biology precision oncology method which has
received NYS CLIA certification and is currently in use for multiple clinical trials at the Columbia University Irving
Medical Center. This translational research project will coincide with simultaneous scientific and clinical training
as the applicant studies computational biology and works closely with thoracic oncologists at CUIMC,
respectively. Following the completion of this research project the applicant will complete clinical training at the
New York Presbyterian Hospital through the Columbia University Vagelos College of Physicians and Surgeons.
This combined scientific and medical predoctoral fellowship will prepare the applicant for an Internal Medicine
residency and a Hematology/Oncology clinical fellowship culminating in a career as an independent physician-
scientist in the field of precision medical oncology.
项目概要/摘要
肺癌是美国癌症相关死亡的主要原因,造成超过
最常见的转移性肺腺癌 (LUAD) 的治疗每年导致 10 万人死亡。
近几十年来,通过靶向治疗的出现,肺癌的组织学亚型得到了显着改善。
对于具有致癌驱动突变的肿瘤和没有免疫检查点抑制剂的肿瘤进行治疗。
高达 50% 的转移性 LUAD 肿瘤对标准抗肿瘤治疗没有反应。
精准肿瘤学努力发现 LUAD 肿瘤药物的基因组或免疫组织化学生物标志物
为了弥补这些缺点,我们建议利用转化。
系统生物学方法通过以下方式识别和靶向 LUAD 耐药性的生物决定因素
由于计算生物学和下一代技术的进步,肿瘤转录组数据的网络分析。
通过测序技术,可以准确地了解每个患者 LUAD 肿瘤内基因的动态表达
测量,为鉴定关键转录调节蛋白提供了一个新的窗口
启动并维持耐药肿瘤表型(即主调节因子)。
主调节蛋白可以通过非参数分析基于等级的富集分析来实现
(NaRnEA),一种新开发的统计方法,能够利用上下文特定的转录调控
网络从 LUAD 肿瘤转录组数据中提取高度机械信息,以实现计算机精度
肿瘤学,从而克服了先前基因组和免疫组织化学方法的局限性。
将利用协调靶向治疗耐药性的主调节蛋白的推断活性
用于开发药物敏感性的转录组机器学习生物标志物。
为 LUAD 中超过 400 种经 FDA 批准和研究的化合物提供扰动基因表达谱
细胞系NCIH1793将被询问以确定能够靶向这些药物主调节因子的药物
使用 OncoTreat 算法产生耐药性,这是一种新颖的系统生物学精准肿瘤学方法,
获得纽约州 CLIA 认证,目前用于哥伦比亚大学欧文分校的多项临床试验
医疗中心。该转化研究项目将同时进行科学和临床培训。
由于申请人研究计算生物学并与 CUIMC 的胸部肿瘤学家密切合作,
完成该研究项目后,申请人将在该机构完成临床培训。
纽约长老会医院通过哥伦比亚大学瓦格洛斯内科医生和外科医生学院。
这种科学和医学博士前奖学金相结合,将为申请人的内科医学做好准备
住院医师实习和血液学/肿瘤学临床研究金最终成为一名独立医生-
精准医学肿瘤学领域的科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Timothy Griffin其他文献
Aaron Timothy Griffin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Timothy Griffin', 18)}}的其他基金
Identifying and Targeting Master Regulators of Drug Resistance in Lung Adenocarcinoma through Network Analysis of Tumor Transcriptomic Data
通过肿瘤转录组数据的网络分析识别和靶向肺腺癌耐药性的主调节因子
- 批准号:
10315207 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
Identifying and Targeting Master Regulators of Drug Resistance in Lung Adenocarcinoma through Network Analysis of Tumor Transcriptomic Data
通过肿瘤转录组数据的网络分析识别和靶向肺腺癌耐药性的主调节因子
- 批准号:
10487448 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Molecular biomarkers of future aggressive behavior in pituitary tumors
垂体瘤未来攻击行为的分子生物标志物
- 批准号:
10650948 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Discovery and characterization of synthetic bioinformatic natural product anticancer agents
合成生物信息天然产物抗癌剂的发现和表征
- 批准号:
10639302 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: