Determining the Architectures and Activities of Polyketide Synthase Modules
确定聚酮合酶模块的结构和活性
基本信息
- 批准号:10669273
- 负责人:
- 金额:$ 31.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acyl Carrier ProteinAcyltransferaseAnabolismAnthelminticsAntibioticsAntineoplastic AgentsArchitectureAzithromycinBindingBiological ModelsBuffersCollaborationsComplexCryoelectron MicroscopyDataDevelopmentDockingElectron MicroscopeElectron MicroscopyEngineeringEnsureEnzymesEvolutionFreezingGatekeepingGoalsHumanHydro-LyasesIn VitroIvermectinKnock-outLearningMediatingMedicineModelingMolecularMolecular ConformationMotionMutagenesisMutateMutationN-terminalNatural ProductsNatureNegative StainingOxidoreductasePhysical condensationPhysiologicalProcessProductionProductivityReactionRenaissanceResearchResolutionRoleSET DomainStructureTechniquesTertiary Protein StructureTestingUpdateVisualizationdesigndimerenoyl reductaseenzyme modelexpectationimprovedin vivoinorganic phosphateinsightinterestmigrationparticlepolyketide synthasepolyketidespolypeptideself assemblystructural biologythioestertooltransacylation
项目摘要
A renaissance in the field of modular polyketide synthases has begun. New tools and paradigms are enabling
deeper insights into the architectures and activities of these enzymatic assembly lines and are facilitating our
long-term goal of applying the synthetic power of modular polyketide synthases to the development and
production of new medicines. Using the updated definition of the “module”, our lab has engineered diverse tri-
/tetra-/pentaketide synthases that are functional both in vivo and in vitro. While these short assembly lines are
uncommon in nature, they are ideal for our structural and functional studies. In Specific Aim 1 we propose to
plunge-freeze these assembly lines as they are synthesizing their polyketide products and investigate them by
cryo-electron microscopy. Since this approach has enabled us to capture high-resolution, dynamic information
of the priming ketosynthase and acyltransferase of a model triketide synthase, we will apply it to synthases that
contain other regions of interest. One objective is to learn how the ketoreductase, dehydratase, and
enoylreductase processing enzymes are oriented relative to one another and the neighboring
ketosynthase+acyltransferase didomains to understand how acyl carrier protein domains move between these
enzymes during the extension and processing of polyketide intermediates. Thus, we will investigate at least
thirteen engineered tri-/tetraketide synthases and two natural synthases functionally validated in our lab that
contain different sets of these processing enzymes. In Specific Aim 2 we propose to elucidate interactions
between processed polyketide intermediates and the ketosynthases that gatekeep for them. We have strong
hypotheses for how sets of substrate tunnel residues interact with intermediates closest to the reactive thioester
to ensure they are properly modified by upstream processing enzymes. Thus, we will appropriately mutate the
gatekeeping residues of ketosynthases in less active model synthases as well as model synthases with
inactivated upstream processing enzymes and determine whether their productivities improve as predicted.
Since our data indicate that polyketide intermediates rigidify the ketosynthase dimer and dimeric
ketosynthase+acyltransferase didomains can be readily identified in cryo-electron microscopy studies, we will
also perform electron microscopy on stalled synthases to solve structures of polyketide-bound
ketosynthase+acyltransferase dimers. In Specific Aim 3 we propose to determine key domain-domain interfaces.
We have evidence that interfaces between processing enzymes and downstream KSs drive the ordered self-
assembly of synthase polypeptides more than the small interface observed between the C- and N-terminal
docking domains and seek structures of representative complexes. We also aim to determine how acyl carrier
protein domains dock with ketosynthases during the transacylation reaction. If we are successful in these
projects, it will greatly inform the rational engineering of modular polyketide synthases that synthesize new
molecules and, ultimately, new medicines.
模块化聚酮合酶领域的复兴已经开始,新的工具和范例正在兴起。
更深入地了解这些酶装配线的架构和活动,并正在促进我们
长期目标是将模块化聚酮合酶的合成能力应用于开发和
使用“模块”的更新定义,我们的实验室设计了多种三重药物。
/四-/五肽合酶在体内和体外均具有功能,而这些短组装线是有效的。
它们在自然界中并不常见,是我们在具体目标 1 中建议的结构和功能研究的理想选择。
在合成聚酮化合物产品时对这些装配线进行急速冷冻,并通过以下方式进行研究:
由于这种方法使我们能够捕获高分辨率的动态信息。
模型三酮化合物合酶的引发酮合酶和酰基转移酶的研究,我们将其应用于以下合酶:
包含其他感兴趣的区域。一个目标是了解酮还原酶、脱水酶和
烯酰还原酶加工酶是相对于彼此和邻近的酶定向的
酮合酶+酰基转移酶双结构域,以了解酰基载体蛋白结构域如何在这些结构域之间移动
因此,我们至少将研究聚酮化合物中间体的延伸和加工过程中的酶。
我们的实验室对 13 种工程三酮/四酮化合物合酶和两种天然合酶进行了功能验证,
在具体目标 2 中,我们建议阐明这些加工酶的不同组。
在加工的聚酮化合物中间体和为其把关的酮合酶之间,我们拥有强大的优势。
关于底物隧道残基组如何与最接近反应性硫酯的中间体相互作用的假设
以确保它们被上游加工酶正确修饰,因此,我们将适当地突变它们。
活性较低的模型合酶以及具有活性的模型合酶中酮合酶的守门残基
灭活上游加工酶并确定其生产率是否如预期提高。
由于我们的数据表明聚酮化合物中间体使酮合酶二聚体和二聚体刚性化
酮合酶+酰基转移酶双结构域可以在冷冻电子显微镜研究中轻松识别,我们将
还对停滞的合酶进行电子显微镜观察,以解析聚酮化合物结合的结构
在具体目标 3 中,我们建议确定关键的域-域接口。
我们有证据表明加工酶和下游 KS 之间的界面驱动有序的自
合酶多肽的组装超过了 C 端和 N 端之间观察到的小界面
我们还旨在确定酰基载体的对接结构域并寻找代表性复合物的结构。
如果我们在这些方面取得成功,蛋白质结构域就会在转酰基反应过程中与酮合成酶对接。
项目,它将极大地指导合成新的模块化聚酮合酶的合理工程
分子,最终是新药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Tristan Keatinge-Clay其他文献
Adrian Tristan Keatinge-Clay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Tristan Keatinge-Clay', 18)}}的其他基金
Harnessing Polyketide Assembly Lines for Medicinal Chemistry
利用聚酮化合物装配线进行药物化学
- 批准号:
10651828 - 财政年份:2022
- 资助金额:
$ 31.91万 - 项目类别:
Determining the Architectures and Activities of Polyketide Synthase Modules
确定聚酮合酶模块的结构和活性
- 批准号:
8691933 - 财政年份:2013
- 资助金额:
$ 31.91万 - 项目类别:
Determining the Architectures and Activities of Polyketide Synthase Modules
确定聚酮合酶模块的结构和活性
- 批准号:
9918938 - 财政年份:2013
- 资助金额:
$ 31.91万 - 项目类别:
Determining the Architectures and Activities of Polyketide Synthase Modules
确定聚酮合酶模块的结构和活性
- 批准号:
8483073 - 财政年份:2013
- 资助金额:
$ 31.91万 - 项目类别:
Determining the Architectures and Activities of Polyketide Synthase Modules
确定聚酮合酶模块的结构和活性
- 批准号:
9263990 - 财政年份:2013
- 资助金额:
$ 31.91万 - 项目类别:
Determining the Architectures and Activities of Polyketide Synthase Modules
确定聚酮合酶模块的结构和活性
- 批准号:
10522700 - 财政年份:2013
- 资助金额:
$ 31.91万 - 项目类别:
DISSECTING AN ANTIBIOTIC FACTORY: OBTAINING THE STRUCTURE OF A POLYKETIDE SYNTHA
剖析抗生素工厂:获得聚酮合成物的结构
- 批准号:
7722011 - 财政年份:2008
- 资助金额:
$ 31.91万 - 项目类别:
相似国自然基金
两种溶血磷脂酸酰基转移酶参与大豆花叶病毒复制与宿主抗性的机制研究
- 批准号:32370158
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
灵芝中灵芝酸生物合成关键酰基转移酶的鉴定和功能研究
- 批准号:32360014
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
酰基转移酶选择性催化酯化虾青素合成的分子机制研究
- 批准号:32372283
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于串级质谱的磷脂酰胆碱酰基转移酶对底物异构体的选择性研究
- 批准号:22304088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二酰基甘油O-酰基转移酶1调控自噬流影响前列腺癌生长的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Structural Biology of Polyether Antibiotic Biosynthesis
聚醚抗生素生物合成的结构生物学
- 批准号:
10261453 - 财政年份:2020
- 资助金额:
$ 31.91万 - 项目类别:
Structural Biology of Polyether Antibiotic Biosynthesis
聚醚抗生素生物合成的结构生物学
- 批准号:
10036330 - 财政年份:2020
- 资助金额:
$ 31.91万 - 项目类别:
Structural biology of polyether antibiotic biosynthesis
聚醚抗生素生物合成的结构生物学
- 批准号:
10912964 - 财政年份:2020
- 资助金额:
$ 31.91万 - 项目类别:
Biosynthetic studies and development of ribomimetic-based anti-infectives
基于核糖体的抗感染药物的生物合成研究和开发
- 批准号:
10318150 - 财政年份:2018
- 资助金额:
$ 31.91万 - 项目类别:
Biosynthetic studies and development of ribomimetic-based anti-infectives
基于核糖体的抗感染药物的生物合成研究和开发
- 批准号:
10079458 - 财政年份:2018
- 资助金额:
$ 31.91万 - 项目类别: