Light-Activated Silver Nanoparticles to Eliminate Antibiotic Resistant Bacteria and Genes
光激活银纳米颗粒消除抗生素耐药细菌和基因
基本信息
- 批准号:10670062
- 负责人:
- 金额:$ 14.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AerobicAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntimicrobial ResistanceAreaAwardBacteriaBacterial Antibiotic ResistanceBiologicalCell DeathCellsChemicalsChemistryDNADataDevelopmentDyesEnvironmentEnvironmental Engineering technologyEvaluationFormulationFriendsGenerationsGenesGoalsGrantHorizontal Gene TransferIonsKineticsLightMammalian CellMembraneMetabolic PathwayMinimum Inhibitory Concentration measurementModalityMutationOutcomes ResearchPathway interactionsPersonsPhotosensitizing AgentsProductionPropertyPublic HealthPumpReactive Oxygen SpeciesReportingResearchResistanceResistance developmentSilverStudentsSurfaceSurface PropertiesSystemTechnologyTestingTherapeuticTherapeutic EffectTrainingTranslatingTranslationsVisible Radiationantibiotic resistant infectionsantimicrobialantimicrobial drugbacterial resistancecareercytotoxiccytotoxicitydaughter celldesigneffective therapyefflux pumpextracellulargraduate studentinnovationirradiationmicrobialnanomaterialsnanoparticlenanoparticulatenanotechnology platformnoveloxidationpathogenprotoporphyrin IXrational designresistance generesistance mechanismsuccessundergraduate student
项目摘要
Abstract
The development of microbial resistance to antimicrobial agents is one of the biggest public health issues of the
21st century. Antibiotic-resistant bacteria (ARB) cause more than 2.8 million antibiotic-resistant infections in the
U.S. each year, and more than 35,000 people die as a result. The principal ways of antibiotic resistance
development are related to the intrinsic bacteria’s ability to evolve rapidly through mutations to either modify
these targets or the pathways for their synthesis, alter or degrade the antibiotic, or pump the antibiotic out of the
cell. Moreover, of critical importance is that all of these resistance mechanisms are encoded by antibiotic
resistance genes (ARGs), which are stable molecules encoded in the DNA and can be passed to daughter cells
or transported by horizontal gene transfer to neighboring pathogens. Despite tremendous efforts utilizing a wide
range of antibiotic discovery platform strategies, their success has been at best incremental. Therefore, there is
a critical need to develop effective approaches to simultaneously eliminate both ARB and ARGs. Recently, the
use of nanomaterials with antimicrobial activity has been explored as a new alternative against ARB and ARGs.
Silver nanoparticles (AgNPs) have been reported to have myriad applications as antimicrobial agents. In
addition, photodynamic inactivation (PDI) is also a feasible strategy to eliminate ARB and ARGs. The remarkable
features of AgNPs such as large surface area, capability to carry and release Ag+ ions, and ability to modulate
the microbial influx/efflux pumps; and PDI like efficient generation of ROS and the fact that does not generate
further resistance make these treatment modalities a promising alternative for the inactivation of ARB and ARGs.
We hypothesize that by combining both approaches, PDI and AgNPs, in the same platform a synergistic effect
to eliminate ARB and destroy ARGs will be achieved. The main goal of this project is to develop a light-activated
silver nanoparticulate system for the effective treatment of ARB and ARGs. This project consists of three aims:
in Aim 1, we will synthesize and characterize protoporphyrin IX (PpIX)-loaded AgNPs. This aim will demonstrate
that fabricating a rationally designed AgNP platform will enable a large payload of PpIX to be carried in a stable
formulation with tunable surface properties. For Aim 2, we will investigate the chemical and colloidal stability of
PpIX-AgNP materials under different culture medium and light irradiation conditions. This aim will provide key
information for the optimization of the platform and the influence of the environment on the generation of ROS
and Ag+ ions. Finally, in Aim 3, we will study the antimicrobial efficacy of PpIX-AgNPs against a panel of ARB,
the ARGs degradation kinetics and the nanoparticles cytotoxicity in mammalian cells. The information obtained
in this aim will allow us to move forward this platform to therapeutic applications.
抽象的
微生物对抗菌药物耐药性的发展是当今世界最大的公共卫生问题之一
21 世纪,抗生素耐药细菌 (ARB) 导致超过 280 万例抗生素耐药感染。
美国每年有超过 35,000 人因此死亡。
发育与内在细菌通过突变快速进化的能力有关
这些目标或其合成途径,改变或降解抗生素,或将抗生素从细胞中泵出
此外,至关重要的是所有这些耐药机制都是由抗生素编码的。
抗性基因 (ARG),是 DNA 中编码的稳定分子,可以传递给子细胞
或通过水平基因转移运输到邻近的病原体,尽管付出了巨大的努力,利用了广泛的方法。
尽管抗生素发现平台策略的范围很广,但它们的成功充其量只是渐进式的。
迫切需要开发有效的方法来同时消除 ARB 和 ARG。
人们正在探索使用具有抗菌活性的纳米材料作为对抗 ARB 和 ARG 的新替代品。
据报道,银纳米粒子(AgNP)作为抗菌剂具有多种应用。
此外,光动力灭活(PDI)也是消除ARB和ARGs的可行策略。
AgNPs 具有比表面积大、携带和释放 Ag+ 离子的能力以及调节能力等特点
微生物流入/流出泵;以及 PDI 等 ROS 的高效生成,并且不生成
进一步的耐药性使这些治疗方式成为 ARB 和 ARG 失活的有希望的替代方案。
我们追求通过在同一个平台上结合 PDI 和 AgNPs 这两种方法来产生协同效应
消除ARB并摧毁ARGs将得以实现 该项目的主要目标是开发一种光激活的方法。
用于有效治疗 ARB 和 ARG 的银纳米颗粒系统 该项目包括三个目标:
在目标 1 中,我们将合成并表征负载原卟啉 IX (PpIX) 的 AgNP。
构建合理设计的 AgNP 平台将使 PpIX 的大有效载荷能够稳定地承载
对于目标 2,我们将研究其化学和胶体稳定性。
该目标将为不同培养基和光照射条件下的PpIX-AgNP材料提供关键。
平台优化以及环境对ROS生成影响的信息
最后,在目标 3 中,我们将研究 PpIX-AgNPs 对一组 ARB 的抗菌功效,
ARGs 降解动力学和纳米颗粒在哺乳动物细胞中的细胞毒性。
为了这个目标,我们将把这个平台推向治疗应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Luis Vivero-Escoto其他文献
Juan Luis Vivero-Escoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Luis Vivero-Escoto', 18)}}的其他基金
Stimuli-responsive mucin1-specific nanoparticles for efficacious combinatorial chemotherapy of pancreatic ductal adenocarcinoma
刺激响应性粘蛋白1特异性纳米粒子用于胰腺导管腺癌的有效联合化疗
- 批准号:
10654848 - 财政年份:2022
- 资助金额:
$ 14.69万 - 项目类别:
Light-Activated Silver Nanoparticles to Eliminate Antibiotic Resistant Bacteria and Genes
光激活银纳米颗粒消除抗生素耐药细菌和基因
- 批准号:
10411735 - 财政年份:2022
- 资助金额:
$ 14.69万 - 项目类别:
Multimodal hybrid nanoparticles for the treatment of triple-negative breast cancer
多模式混合纳米粒子用于治疗三阴性乳腺癌
- 批准号:
10514997 - 财政年份:2022
- 资助金额:
$ 14.69万 - 项目类别:
Multifunctional nanoparticles for combinational therapy of pancreatic cancer
用于胰腺癌联合治疗的多功能纳米颗粒
- 批准号:
8812549 - 财政年份:2014
- 资助金额:
$ 14.69万 - 项目类别:
相似国自然基金
二(苯乙烯基)酮类光敏抗菌剂的设计,合成及应用研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
土壤真菌群落对典型三唑类抗菌剂的抗药性响应特征和机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于呫吨酮的拟肽抗菌剂设计合成、抗菌活性和分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 14.69万 - 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 14.69万 - 项目类别:
Deciphering microbial metalloenzyme functions in microaerobic host environments
破译微生物金属酶在微氧宿主环境中的功能
- 批准号:
10711457 - 财政年份:2023
- 资助金额:
$ 14.69万 - 项目类别:
Light-Activated Silver Nanoparticles to Eliminate Antibiotic Resistant Bacteria and Genes
光激活银纳米颗粒消除抗生素耐药细菌和基因
- 批准号:
10411735 - 财政年份:2022
- 资助金额:
$ 14.69万 - 项目类别:
Integration of heme acquisition and signaling in Gram-negative pathogens
革兰氏阴性病原体中血红素获取和信号传导的整合
- 批准号:
10378657 - 财政年份:2021
- 资助金额:
$ 14.69万 - 项目类别: