Optimizing treatment decision by accounting for longitudinal biomarker trajectories and competing risks of each individual
通过考虑每个个体的纵向生物标志物轨迹和竞争风险来优化治疗决策
基本信息
- 批准号:10658050
- 负责人:
- 金额:$ 38.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-12 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingBenefits and RisksBiological MarkersCessation of lifeChronic DiseaseChronic Kidney FailureChronic Myeloid LeukemiaComputer softwareDataDecision MakingDevelopmentDiabetes MellitusDimensionsDiseaseDisease ProgressionFutureGoalsHealth StatusHeart DiseasesIndividualKidney DiseasesLifeLiteratureMalignant NeoplasmsMean Survival TimesMeasurementMethodsModelingMonitorPatient riskPatientsPatternPerformancePhysiciansPopulationPrincipal Component AnalysisProcessRandomized, Controlled TrialsResearchRiskRisk EstimateSelection for TreatmentsSeriesStatistical MethodsStatistical ModelsStem cell transplantTechniquesTestingTimeVisitWeightaggressive therapydesignflexibilityfollow-upfrailtygraft vs host diseasehigh dimensionalityimprovedleukemiaoptimal treatmentspredictive modelingprognostic modelprogramsrisk predictionsimulationsoftware developmenttemporal measurementtreatment optimizationtreatment strategyuser-friendlyvalidation studiesvectorvirtualvirtual patient
项目摘要
Project Summary/Abstract
The goal of this proposal is to develop statistical methods for evaluating treatment strategies at different
time points and identifying optimal treatment strategies on the basis of patients' longitudinal biomarker
measurements. It is motivated by our research on identifying the best timing for patients with chronic myeloid
leukemia (CML) to receive a stem cell transplant (SCT). SCT can cure leukemia, but it is associated with life-
threatening risks. For this reason, most patients start with other less-aggressive treatment options that are
much safer but cannot cure the disease. Thus the decision-making about optimal timing of SCT depends on a
patient's disease progression. However, it is infeasible to conduct a randomized controlled trial to weigh the
risks and benefits of SCT at various times. To optimize this decision-making process, sophisticated and
comprehensive statistical models are needed to provide an accurate estimation of the benefits and risks (and
their trade-offs) over time for patients under different SCT timing options. However, these have not yet been
developed, due to the challenges elaborated below.
First, the question of an optimal decision on SCT cannot be answered by a single statistical model, it
requires assembling information from a series of models and analyses. Second, there most likely is not a
uniform solution for this question, as the optimal timing of SCT depends on each individual's disease
progression status. Consequently, physicians must use patients' longitudinal biomarker trajectories to monitor
their health status and make treatment decision in a dynamic fashion. Third, the treatment decision for each
individual must account for their competing risks, including death by treatment-related complications and other
causes (e.g., heart diseases and diabetes). Finally, it is impossible to implement optimal decision-making
without an easy-to-use software. The following specific aims are proposed to solve these problems.
Aim 1: Use functional component principal component analysis (FPCA) techniques to fully capture the
dominant patterns from patients' longitudinal biomarker trajectories, and use them as predictors of
patients’ risk of disease progression.
Aim 2: Estimate dynamic competing risks based on baseline covariates and longitudinal biomarker
trajectories using multi-state models.
Aim 3: Use analytic and microsimulation approaches to estimate and compare the mean survival times
under different SCT timing options.
Aim 4: Conduct validation studies, develop software, and broaden application.
Three CML studies will be used to cross-validate each other regarding the optimal timing of SCT. Software
programs with user-friendly interfaces will be made publicly available. The proposed statistical and software
programs will be adapted and applied to a study of kidney disease to test their broad application.
项目概要/摘要
该提案的目标是开发统计方法来评估不同时期的治疗策略
时间点并根据患者的纵向生物标志物确定最佳治疗策略
我们的研究旨在确定慢性粒细胞白血病患者的最佳治疗时机。
白血病(CML)接受干细胞移植(SCT)可以治愈白血病,但它与生命有关。
因此,大多数患者会从其他不太激进的治疗方案开始。
安全得多,但无法治愈疾病,因此 SCT 最佳时机的决策取决于以下因素:
然而,进行随机对照试验来衡量患者的疾病进展是不可行的。
SCT 在不同时间的风险和收益,以优化这一复杂且复杂的决策过程。
需要全面的统计模型来准确估计收益和风险(以及
随着时间的推移,不同 SCT 时机选择的患者的权衡取舍 然而,这些尚未得到证实。
由于以下详述的挑战而开发。
首先,SCT 的最佳决策问题不能用单一的统计模型来回答,它
需要从一系列模型和分析中收集信息,其次,很可能没有。
这个问题有统一的解决方案,因为 SCT 的最佳时机取决于每个人的疾病
状态测试后,医生必须使用患者的纵向生物标志物轨迹来监测。
他们的健康状况并以动态方式做出治疗决定第三,每个人的治疗决定。
个人必须考虑其竞争风险,包括因治疗相关并发症和其他原因导致的死亡
最后,不可能实施最佳决策。
没有易于使用的软件,提出以下具体目标来解决这些问题。
目标 1:使用功能组件主成分分析 (FPCA) 技术来充分捕获
从患者的纵向生物标志物轨迹中找出主导模式,并将其用作预测因子
患者疾病进展的风险。
目标 2:根据基线协变量和纵向生物标志物估计动态竞争风险
使用多状态模型的轨迹。
目标 3:使用分析和微观模拟方法来估计和比较平均生存时间
在不同的 SCT 计时选项下。
目标 4:进行验证研究、开发软件并扩大应用。
三项 CML 研究将用于相互验证 SCT 软件的最佳时机。
具有用户友好界面的程序将公开提供。
项目将被调整并应用于肾脏疾病的研究,以测试其广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuelin Huang其他文献
Xuelin Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuelin Huang', 18)}}的其他基金
Core 3: Biostatistics, Data Management, and Bioinformatics
核心 3:生物统计学、数据管理和生物信息学
- 批准号:
10931066 - 财政年份:2023
- 资助金额:
$ 38.49万 - 项目类别:
Core 3: Biostatistics, Data Management, and Bioinformatics
核心 3:生物统计学、数据管理和生物信息学
- 批准号:
10247501 - 财政年份:2003
- 资助金额:
$ 38.49万 - 项目类别:
Core 3: Biostatistics, Data Management, and Bioinformatics
核心 3:生物统计学、数据管理和生物信息学
- 批准号:
10006810 - 财政年份:2003
- 资助金额:
$ 38.49万 - 项目类别:
Data and Omics Sciences Core (DATAOmics)
数据和组学科学核心 (DATAOmics)
- 批准号:
10466876 - 财政年份:2002
- 资助金额:
$ 38.49万 - 项目类别:
Data and Omics Sciences Core (DATAOmics)
数据和组学科学核心 (DATAOmics)
- 批准号:
10249307 - 财政年份:2002
- 资助金额:
$ 38.49万 - 项目类别:
Data and Omics Sciences Core (DATAOmics)
数据和组学科学核心 (DATAOmics)
- 批准号:
10020957 - 财政年份:2002
- 资助金额:
$ 38.49万 - 项目类别:
Core 3: Biostatistics, Data Management, and Bioinformatics
核心 3:生物统计学、数据管理和生物信息学
- 批准号:
9762855 - 财政年份:
- 资助金额:
$ 38.49万 - 项目类别:
相似海外基金
Differentiating the biological effects of vaping from smoking by analyzing the methylome and transcriptome
通过分析甲基化组和转录组区分电子烟和吸烟的生物学效应
- 批准号:
10588059 - 财政年份:2023
- 资助金额:
$ 38.49万 - 项目类别:
Sleep Apnea-Specific Nocturnal Blood Pressure Surge to Determine Cardiovascular Risks and Therapeutic Benefits in Patients with Obstructive Sleep Apnea
睡眠呼吸暂停特异性夜间血压升高可确定阻塞性睡眠呼吸暂停患者的心血管风险和治疗效果
- 批准号:
10686068 - 财政年份:2021
- 资助金额:
$ 38.49万 - 项目类别:
Sleep Apnea-Specific Nocturnal Blood Pressure Surge to Determine Cardiovascular Risks and Therapeutic Benefits in Patients with Obstructive Sleep Apnea
睡眠呼吸暂停特异性夜间血压升高可确定阻塞性睡眠呼吸暂停患者的心血管风险和治疗效果
- 批准号:
10277143 - 财政年份:2021
- 资助金额:
$ 38.49万 - 项目类别:
Insulin resistance in the development and progression of invasive bladder cancer
浸润性膀胱癌发生和进展中的胰岛素抵抗
- 批准号:
9284276 - 财政年份:2015
- 资助金额:
$ 38.49万 - 项目类别:
Insulin resistance in the development and progression of invasive bladder cancer
浸润性膀胱癌发生和进展中的胰岛素抵抗
- 批准号:
8891619 - 财政年份:2015
- 资助金额:
$ 38.49万 - 项目类别: