Parameterizing the relationship between motor cortical reactivation during sleep and motor skill acquisition in the freely behaving marmoset
参数化睡眠期间运动皮层重新激活与自由行为狨猴运动技能习得之间的关系
基本信息
- 批准号:10658109
- 负责人:
- 金额:$ 208.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsBehaviorBehavioralCallithrixCallithrix jacchus jacchusDependenceElectrophysiology (science)EventFrequenciesFutureHourHumanHuman bodyLearningLimb structureLinkLiteratureMeasuresMemoryMethodologyMethodsModelingMonkeysMotor CortexMotor SkillsMovementNetwork-basedNeuronsOrder ColeopteraPatternPerformancePopulationPopulation DynamicsPositioning AttributePrimatesProcessReaction TimeRecurrenceResearchRoleScienceSleepSleep ArchitectureSpeedStressStructureSystemTechniquesTestingTimeTitrationsTrainingUpdateUpper limb movementVariantimprovedimprovement on sleepinsightkinematicsmemory consolidationmotor behaviormotor learningmotor skill learningmulti-electrode arraysneuralnon rapid eye movementnonhuman primatepopulation basedrole modelskill acquisitionskillstooltouchscreenwirelesswireless transmission
项目摘要
Project Summary/Abstract
This project will provide a more nuanced and mechanistic model of the role of sleep in memory consolidation,
particularly as it pertains to procedural motor skill acquisition in a non-human primate model. Motor skill
learning delineated by enhanced speed, automaticity, and accuracy of a correlate strongly with the duration of
non-REM (NREM) sleep. Neural reactivations of daytime neural activity preferentially occur during NREM, and
disruptions in NREM sleep negatively impacts memory consolidation. Since neural reactivations are not perfect
copies of daytime activity it is unclear what specific information about behavior and skill acquisition is being
reactivated during sleep. Do reactivations reflect certain parts or kinematic variables of the motor behavior
conducted during the day? Do changes in these reactivations predict certain features of future motor skill
improvements? We will develop a model that parameterizes the relationship between reactivation and memory
by measuring the dependence of motor skill learning on the number of reactivations, the fidelity of
reactivations, and, most importantly, the decodability of these reactivations each night and over subsequent
nights. That is, we will build decoding algorithms that accurately predict upper limb movements from neural
activity during the day and then use these algorithms to identify if spiking that is specific to certain kinematic
variables are preferentially reactivated. We will use the natural process of retrograde interference when a
subject learns a second motor skill following the first skill at various inter-task intervals to manipulate
reactivation and skill acquisition to more causally link reactivation to motor skill acquisition. Finally, our model
will enhance the standard sleep-consolidation framework using network science based tools to identify circuit
level changes: with a particular emphasis on higher order relationships between superficial and deep neurons
that are predictive of motor skill learning. To do so we will use wireless neural recordings from motor cortex
(M1) in unrestrained marmoset monkeys (Callithrix jacchus) will examine motor skill acquisition and sleep-
induced memory consolidation of these skills. Multi-electrode arrays with multiple contacts in depth will allow
us to systematically parameterize the interdependence of reactivations and network changes across cortical
lamina in M1 with motor skill performance. In Aim 1, we will measure changes in M1 population dynamics
across cortical lamina as monkeys engage in naturalistic and artificial motor skill acquisition tasks. In Aim 2, we
will characterize reactivations of skill-related neuronal activity patterns in M1 during sleep with a focus on the
behaviorally-relevant information content of these reactivations using population decoding methods and
functional network techniques. Finally, in Aim 3, we will examine retrograde interference and sleep reactivation
to naturally manipulate reactivation and skill acquisition. These aims will provide one of the first and most
comprehensive examinations of the role of sleep-induced reactivations of behaviorally relevant multineuronal
activity patterns in motor skill acquisition of the primate.
项目概要/摘要
该项目将为睡眠在记忆巩固中的作用提供一个更细致、更机械的模型,
特别是因为它涉及非人类灵长类动物模型中的程序性运动技能获取。运动技能
学习的速度、自动化程度和准确性的提高与学习的持续时间密切相关
非快速眼动 (NREM) 睡眠。白天神经活动的神经重新激活优先发生在 NREM 期间,并且
NREM 睡眠中断会对记忆巩固产生负面影响。由于神经重新激活并不完美
白天活动的副本尚不清楚有关行为和技能获取的具体信息是什么
睡眠时重新激活。重新激活是否反映了运动行为的某些部分或运动学变量
白天进行?这些重新激活的变化是否可以预测未来运动技能的某些特征
改进?我们将开发一个模型来参数化重新激活和记忆之间的关系
通过测量运动技能学习对重新激活次数的依赖性,
重新激活,最重要的是,每晚和随后的这些重新激活的可解码性
夜晚。也就是说,我们将构建解码算法,从神经网络中准确预测上肢运动。
白天的活动,然后使用这些算法来识别是否特定于某些运动学的尖峰
变量优先重新激活。当出现异常情况时,我们将使用逆行干扰的自然过程
受试者在各种任务间间隔学习第一个技能之后学习第二个运动技能来进行操作
重新激活和技能习得,将重新激活与运动技能习得更因果地联系起来。最后,我们的模型
将使用基于网络科学的工具来识别电路来增强标准睡眠巩固框架
水平变化:特别强调浅层和深层神经元之间的高阶关系
这是运动技能学习的预测。为此,我们将使用来自运动皮层的无线神经记录
(M1)不受约束的狨猴(Callithrix jacchus)将检查运动技能的获得和睡眠-
诱发这些技能的记忆巩固。具有多个深度接触的多电极阵列将允许
我们系统地参数化跨皮质的重新激活和网络变化的相互依赖性
M1 中的椎板具有运动技能表现。在目标 1 中,我们将测量 M1 种群动态的变化
当猴子从事自然主义和人工运动技能习得任务时,大脑皮层会发生变化。在目标 2 中,我们
将表征睡眠期间 M1 中与技能相关的神经元活动模式的重新激活,重点关注
使用群体解码方法和这些重新激活的行为相关信息内容
功能网络技术。最后,在目标 3 中,我们将研究逆行干扰和睡眠重新激活
自然地操纵重新激活和技能获取。这些目标将提供第一个也是最重要的目标之一
全面检查睡眠诱导的行为相关多神经元再激活的作用
灵长类动物运动技能习得的活动模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas G Hatsopoulos其他文献
Nicholas G Hatsopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas G Hatsopoulos', 18)}}的其他基金
Cortical control and biomechanics of tongue movement
舌头运动的皮质控制和生物力学
- 批准号:
10781477 - 财政年份:2023
- 资助金额:
$ 208.51万 - 项目类别:
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
- 批准号:
10642915 - 财政年份:2021
- 资助金额:
$ 208.51万 - 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
- 批准号:
9908190 - 财政年份:2019
- 资助金额:
$ 208.51万 - 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
- 批准号:
10600020 - 财政年份:2019
- 资助金额:
$ 208.51万 - 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
- 批准号:
10377916 - 财政年份:2019
- 资助金额:
$ 208.51万 - 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
- 批准号:
9765773 - 财政年份:2019
- 资助金额:
$ 208.51万 - 项目类别:
Coding of action by motor & premotor cortical ensembles
电机动作编码
- 批准号:
8287588 - 财政年份:2004
- 资助金额:
$ 208.51万 - 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
- 批准号:
8875067 - 财政年份:2004
- 资助金额:
$ 208.51万 - 项目类别:
Coding of action by motor & premotor cortical ensembles
电机动作编码
- 批准号:
6895493 - 财政年份:2004
- 资助金额:
$ 208.51万 - 项目类别:
Coding of action by motor & premotor cortical ensembles
电机动作编码
- 批准号:
8089305 - 财政年份:2004
- 资助金额:
$ 208.51万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多种生物标志物和机器学习算法构建特发性快速眼动睡眠行为障碍向α-突触核蛋白病转化的预测模型研究
- 批准号:82201401
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 208.51万 - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 208.51万 - 项目类别:
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 208.51万 - 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
- 批准号:
10565985 - 财政年份:2023
- 资助金额:
$ 208.51万 - 项目类别: