Molecular pathways affected by drugs that disrupt Na+ and lipid homeostasis in malaria parasites
破坏疟原虫中钠和脂质稳态的药物影响的分子途径
基本信息
- 批准号:10659924
- 负责人:
- 金额:$ 71.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-05 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseActive Biological TransportAffectAntimalarialsBiochemicalBiologicalBiologyCarbonCell CycleCell membraneCellsChemicalsCholesterolCholesterol HomeostasisChromosome SegregationClinical TrialsCollectionComplexCytolysisCytoplasmDNA metabolismDevelopmentDrug TargetingDrug resistanceEnzymesEventExposure toFatty AcidsFundingGeneticGoalsHomeostasisHomoKnowledgeLipidsMalariaMembraneMetabolicMetabolismMolecularMorphologyParasitesPathway interactionsPatientsPediatric HospitalsPharmaceutical PreparationsPhasePhenotypePhiladelphiaPhysiologyPlasmodiumPlasmodium falciparumPlayProcessProtein DephosphorylationProtein phosphataseProteinsResearch PersonnelRoleSignal TransductionSodiumStructureUniversitiesWorkdrug discoveryfatty acid transportgenetic manipulationinhibitorinsightinterdisciplinary approachlipid transportnuclear divisionprematurepreventrecruitresponserhoptrysmoothened signaling pathway
项目摘要
Project Summary
In recent years, several chemically diverse compounds have been identified that target PfATP4, a P-type
ATPase involved in maintaining Na+ homeostasis in malaria parasites. Some of these compounds have
advanced to clinical trials. Thus, PfATP4-active compounds are among the most attractive new antimalarials
being developed to counter the continuing threat of drug resistance. Over the previous funding period, we have
discovered some dramatic alterations in parasite physiology that accompany a short 2 h exposure to PfATP4
inhibitors. These include: i) Rapid alterations in lipid homeostasis within the parasites with reversible
accumulation of cholesterol in the parasite plasma membrane (PPM); ii) Morphological changes resembling
premature schizogony; and iii) Massive dephosphorylation of parasite proteins that may underlie the metabolic
slowdown that follows PfATP4 inhibition. These observations reveal a collection of hitherto unknown interrelated
molecular pathways, disruptions of which result in parasite demise. We found that PfATP4 inhibition appears to
result in inhibition of PfNCR1, another druggable transporter, that is involved in maintaining lipid/cholesterol
homeostasis within the PPM. Reduction of cholesterol content of the RBC plasma membrane results in dramatic
expulsion of trophozoites from the host cell without the lysis of the RBC membrane. Remarkably, treatment with
either PfATP4 or PfNCR1 inhibitors prevents this expulsion. These studies suggest an active transport of
cholesterol between the RBC plasma membrane and the parasite. We found that trophozoite stage parasites
exposed to PfATP4 inhibitors for just 2 h undergo massive morphological changes that resemble premature
onset of schizogony events including the formation of inner membrane complexes, rhoptry-like structures and
karyokinesis. In addition, trophozoites undergo massive reduction of a large number of metabolites suggestive
of metabolic shutdown. We hypothesize that underlying all these events is a signaling cascade unleashed by
the influx of Na+ into parasite cytoplasm following PfATP4 inhibition. In support of this proposition, we found
dephosphorylation of a large number of proteins, prominent among which were molecules involved in DNA
metabolism, chromosome segregation and cell cycle processes. The complexity of events triggered by PfATP4
inhibition requires a multidisciplinary approach. For this purpose, we have recruited outstanding co-investigators
in consortium arrangements for the next funding period. Together, we propose to carry out the following specific
aims: i) Investigate the relationship between cholesterol dynamics and its role in fatty acid and lipid transport in
P. falciparum; ii) Explore the significance of dephosphorylation of proteins that follows PfATP4 inhibition; iii)
Examine the causes of metabolic slowdown following PfATP4 inhibition; iv) Derive structural information for
PfATP4 and PfNCR1 to understand molecular details about these validated antimalarial drug targets.
项目概要
近年来,已经鉴定出几种化学性质不同的化合物,它们以 PfATP4(一种 P 型)为目标。
ATP 酶参与维持疟疾寄生虫的 Na+ 稳态。其中一些化合物具有
进入临床试验阶段。因此,PfATP4 活性化合物是最具吸引力的新型抗疟药之一
正在开发以对抗耐药性的持续威胁。在上一个资助期间,我们有
发现短暂接触 PfATP4 2 小时后,寄生虫生理学会发生一些巨大的变化
抑制剂。这些包括: i) 寄生虫内脂质稳态的快速改变,具有可逆性
寄生虫质膜中胆固醇的积累(PPM); ii) 形态变化类似
过早的分裂; iii) 寄生虫蛋白的大规模去磷酸化可能是代谢的基础
PfATP4 抑制后的减慢。这些观察结果揭示了一系列迄今为止未知的相互关联的现象
分子途径,其破坏导致寄生虫死亡。我们发现 PfATP4 抑制似乎
导致 PfNCR1 的抑制,PfNCR1 是另一种药物转运蛋白,参与维持脂质/胆固醇
PPM 内的稳态。红细胞质膜胆固醇含量的降低导致显着
将滋养体从宿主细胞中排出,而不裂解红细胞膜。值得注意的是,治疗
PfATP4 或 PfNCR1 抑制剂可防止这种排出。这些研究表明主动运输
红细胞质膜和寄生虫之间的胆固醇。我们发现滋养体阶段的寄生虫
暴露于 PfATP4 抑制剂仅 2 小时就会发生类似于早产的巨大形态变化
分裂事件的发生,包括形成内膜复合物、菱状结构和
核分裂。此外,滋养体经历大量代谢物的大量减少,提示
代谢关闭。我们假设所有这些事件的背后是由以下因素释放的信号级联:
PfATP4 抑制后 Na+ 流入寄生虫细胞质。为了支持这一主张,我们发现
大量蛋白质的去磷酸化,其中最重要的是涉及 DNA 的分子
新陈代谢、染色体分离和细胞周期过程。 PfATP4触发事件的复杂性
抑制需要多学科的方法。为此,我们招募了优秀的联合研究员
下一个资助期的财团安排。我们建议共同开展以下具体工作
目标: i) 研究胆固醇动态及其在脂肪酸和脂质转运中的作用之间的关系
恶性疟原虫; ii) 探索 PfATP4 抑制后蛋白质去磷酸化的意义;三)
检查 PfATP4 抑制后代谢减慢的原因; iv) 导出结构信息
PfATP4 和 PfNCR1 了解这些经过验证的抗疟药物靶点的分子细节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AKHIL B VAIDYA其他文献
AKHIL B VAIDYA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AKHIL B VAIDYA', 18)}}的其他基金
Molecular Pathways Affected by Drugs that Disrupt Na+ Homeostasis in Malaria Parasites
破坏疟原虫 Na 稳态的药物影响的分子途径
- 批准号:
9364295 - 财政年份:2017
- 资助金额:
$ 71.2万 - 项目类别:
Molecular Pathways Affected by Drugs that Disrupt Na+ Homeostasis in Malaria Parasites
破坏疟原虫 Na 稳态的药物影响的分子途径
- 批准号:
9913475 - 财政年份:2017
- 资助金额:
$ 71.2万 - 项目类别:
Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
- 批准号:
8320487 - 财政年份:2012
- 资助金额:
$ 71.2万 - 项目类别:
Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
- 批准号:
8416318 - 财政年份:2012
- 资助金额:
$ 71.2万 - 项目类别:
Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
- 批准号:
8605504 - 财政年份:2012
- 资助金额:
$ 71.2万 - 项目类别:
Tools for Genomic Investigations of Plasmodium vivax
间日疟原虫基因组研究工具
- 批准号:
7145646 - 财政年份:2006
- 资助金额:
$ 71.2万 - 项目类别:
Tools for Genomic Investigations of Plasmodium vivax
间日疟原虫基因组研究工具
- 批准号:
7232437 - 财政年份:2006
- 资助金额:
$ 71.2万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
7002735 - 财政年份:2003
- 资助金额:
$ 71.2万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
6836481 - 财政年份:2003
- 资助金额:
$ 71.2万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
6760043 - 财政年份:2003
- 资助金额:
$ 71.2万 - 项目类别:
相似国自然基金
大肠杆菌基因工程菌发酵生产琥珀酸过程中CO2转运与固定的协同代谢调控
- 批准号:21176059
- 批准年份:2011
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Structural Studies of Alternating-site Reactivity in Nitrogenase-like Oxidoreductases
固氮酶样氧化还原酶的交替位点反应性的结构研究
- 批准号:
10382228 - 财政年份:2021
- 资助金额:
$ 71.2万 - 项目类别:
Structural Studies of Alternating-site Reactivity in Nitrogenase-like Oxidoreductases
固氮酶样氧化还原酶的交替位点反应性的结构研究
- 批准号:
10157289 - 财政年份:2021
- 资助金额:
$ 71.2万 - 项目类别:
Structural Studies of Alternating-site Reactivity in Nitrogenase-like Oxidoreductases
固氮酶样氧化还原酶的交替位点反应性的结构研究
- 批准号:
10592277 - 财政年份:2021
- 资助金额:
$ 71.2万 - 项目类别:
Understanding metabolic vulnerabilities in cancer and the impact the tumor microenvironment has on cancer progression.
了解癌症的代谢脆弱性以及肿瘤微环境对癌症进展的影响。
- 批准号:
10644011 - 财政年份:2020
- 资助金额:
$ 71.2万 - 项目类别:
Understanding metabolic vulnerabilities in cancer and the impact the tumor microenvironment has on cancer progression.
了解癌症的代谢脆弱性以及肿瘤微环境对癌症进展的影响。
- 批准号:
10199963 - 财政年份:2020
- 资助金额:
$ 71.2万 - 项目类别: