High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
基本信息
- 批准号:10659397
- 负责人:
- 金额:$ 78.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptedAlgorithmsBiological ProcessCell physiologyCellsCellular StructuresCellular biologyCodeColorComplexCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDataData AnalysesData SetDetectionDevelopmentDiagnosisDiseaseDisease modelEpitheliumGoalsHeterogeneityHomeostasisHumanImageImage AnalysisIndividualKnowledgeLearningLightLightingLungMachine LearningMapsMethodsMicrofluidic MicrochipsMicroscopeMicroscopyModelingMolecularMonitorMorbidity - disease rateMucociliary ClearanceOpticsPhenotypePlayPopulationPositioning AttributeProcessProtocols documentationResearchResolutionRespiratory DiseaseRoleScanningSeriesSourceStructureSupervisionSystemTechniquesTechnologyTestingTimeTissuesTranscendairway epitheliumanalytical toolcell typecellular imagingcostdeep learningdesigndigital imagingdisease phenotypefeature selectionhigh resolution imagingimaging platformimaging systemin vitro Modelinduced pluripotent stem cellinnovationinsightlarge datasetslive cell imaginglive cell microscopymortalitymoviemultidimensional datanoveloperationreconstructionrespiratorysingle cell analysissingle-cell RNA sequencingspatiotemporalsupervised learningtemporal measurementtherapeutically effectivethree dimensional cell culturetomographytooltrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Challenges. The airway epithelium consists of various cell types – understanding cellular and functional
heterogeneity will have a significant impact on diagnosing and treating diseases. However, few analytical tools
are available to investigate spatiotemporal phenotypes of these cells on a global population scale.
Conventional high-throughput microscopy (HTM), although powerful for dissecting heterogeneous biological
processes, is significantly limited in multiscale imaging and analytics. Most HTM systems are constructed by
combining high-magnification microscopes with scanning stages; this configuration would entail high
complexity in the system design and operation, high cost, and slow image acquisition rates. Follow-on data
analyses, based on traditional ensemble averaging approaches, often lead to the loss of detailed mechanistic
information. Innovations. We will advance a “smart” imaging platform, M3 (Multiscale Machine-learning
Microscopy) for large-scale, live-cell analyses. M3 will integrate cutting-edge breakthroughs: Fourier
ptychographic microscopy (FPM) and deep learning (DL). FPM is based on a spatially coded-illumination
technique, collecting low-resolution image sequences while changing the position of a point-light source. These
images are then numerically combined to restore the whole Fourier space, allowing FPM to achieve both wide
field-of-view and high spatial resolution simultaneously. DL is potent in discovering intricate, hidden structures
in high-dimensional data sets with limited human supervision. We will integrate DL with time-series modeling to
learn disease-related cellular traits. Goals. We will implement the M3 platform and adopt it to analyze cellular
phenotypes during airway epithelium development. Aim 1. We will construct the M3 imaging system based on
the FPM technology. This system will feature i) a new numerical algorithm to reconstruct 3D volumetric images
and ii) multi-color imaging capacity for molecular detection. Aim 2. We will advance a DL framework for M3
image analyses. This framework will be designed to recognize different cell types and learn their
spatiotemporal features to unravel multiscale cellular heterogeneity. Aim 3. We will apply M3 to phenotype
cells in the airway epithelium. We will use an in-vitro model that uses induced pluripotent stem cells (iPSCs) to
derive lung epithelium. M3 will monitor cellular differentiation during epithelium development and examine the
correlation between cellular phenotypes and functionals. Impact. The M3 will bring unprecedented analytical
power to characterize diverse cells within the airway epithelium, allowing us to discover many hidden
phenotypes in cellular and tissue levels. Such knowledge would have implications for early disease detection
as well as designing effective therapeutics.
项目概要/摘要
挑战。气道上皮由多种细胞类型组成——了解细胞和功能。
异质性将对疾病的诊断和治疗产生重大影响,但分析工具却很少。
可用于在全球群体规模上研究这些细胞的时空表型。
传统的高通量显微镜 (HTM),尽管对于解剖异质生物体来说功能强大
过程,在多尺度成像和分析方面受到很大限制,大多数 HTM 系统都是由
将高倍显微镜与扫描台相结合;这种配置需要高倍率
系统设计和操作复杂,成本高,后续数据采集速度慢。
基于传统集成平均方法的分析常常导致详细机制的丢失
我们将推进“智能”成像平台 M3(多尺度机器学习)。
用于大规模活细胞分析的显微镜)M3 将整合尖端突破:傅立叶。
叠层显微镜(FPM)和深度学习(FPM)基于空间编码照明。
技术,在改变点光源位置的同时收集低分辨率图像序列。
然后对图像进行数值组合以恢复整个傅立叶空间,从而使 FPM 能够实现宽幅
同时实现视场和高空间分辨率的深度学习能够有效地发现复杂的隐藏结构。
在人类监督有限的高维数据集中,我们将把深度学习与时间序列建模结合起来。
了解与疾病相关的细胞特征。我们将实施 M3 平台并采用它来分析细胞。
目标1.我们将构建基于M3成像系统。
该系统将采用 i) 一种新的数值算法来重建 3D 体积图像。
ii) 用于分子检测的多色成像能力。我们将推进 M3 的深度学习框架。
该框架旨在识别不同的细胞类型并了解它们的特征。
目标 3.我们将 M3 应用于表型。
我们将使用诱导多能干细胞 (iPSC) 的体外模型来研究气道上皮细胞。
衍生肺上皮细胞将监测上皮发育过程中的细胞分化并检查
M3 将带来前所未有的分析影响。
具有表征气道上皮内不同细胞的能力,使我们能够发现许多隐藏的
细胞和组织水平的表型对于早期疾病检测具有重要意义。
以及设计有效的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hakho Lee其他文献
Hakho Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hakho Lee', 18)}}的其他基金
3D Fourier Imaging System for High Throughput Analyses of Cancer Organoids
用于癌症类器官高通量分析的 3D 傅里叶成像系统
- 批准号:
10358186 - 财政年份:2022
- 资助金额:
$ 78.12万 - 项目类别:
3D Fourier Imaging System for High Throughput Analyses of Cancer Organoids
用于癌症类器官高通量分析的 3D 傅里叶成像系统
- 批准号:
10577796 - 财政年份:2022
- 资助金额:
$ 78.12万 - 项目类别:
High-throughput Integrated Magneto-electrochemical Exosome (HiMEX) platform to identify neurodevelopmental markers associated with pre and postnatal oxycodone exposure
高通量集成磁电化学外泌体 (HiMEX) 平台,用于识别与产前和产后羟考酮暴露相关的神经发育标志物
- 批准号:
10017043 - 财政年份:2019
- 资助金额:
$ 78.12万 - 项目类别:
Clinical platform for high-throughput analyses of extracellular vesicles
细胞外囊泡高通量分析的临床平台
- 批准号:
9754806 - 财政年份:2018
- 资助金额:
$ 78.12万 - 项目类别:
Clinical platform for high-throughput analyses of extracellular vesicles
细胞外囊泡高通量分析的临床平台
- 批准号:
9906460 - 财政年份:2018
- 资助金额:
$ 78.12万 - 项目类别:
Clinical platform for high-throughput analyses of extracellular vesicles
细胞外囊泡高通量分析的临床平台
- 批准号:
10462501 - 财政年份:2018
- 资助金额:
$ 78.12万 - 项目类别:
Clinical platform for high-throughput analyses of extracellular vesicles
细胞外囊泡高通量分析的临床平台
- 批准号:
10224771 - 财政年份:2018
- 资助金额:
$ 78.12万 - 项目类别:
Multiplexed exosome analyses with DNA barcoding
使用 DNA 条形码进行多重外泌体分析
- 批准号:
9266748 - 财政年份:2016
- 资助金额:
$ 78.12万 - 项目类别:
Multiplexed exosome analyses with DNA barcoding
使用 DNA 条形码进行多重外泌体分析
- 批准号:
9266748 - 财政年份:2016
- 资助金额:
$ 78.12万 - 项目类别:
Multiplexed exosome analyses with DNA barcoding
使用 DNA 条形码进行多重外泌体分析
- 批准号:
9099367 - 财政年份:2016
- 资助金额:
$ 78.12万 - 项目类别:
相似国自然基金
适当冷暴露通过肠道菌群调控心脏免疫微环境改善心梗后心室重构和心力衰竭的作用与机制
- 批准号:82330014
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
- 批准号:82360624
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
心外膜细胞中BRD4通过促进MEOX-1表达激活TGF-β信号通路参与糖尿病心肌病纤维化形成的分子机制研究
- 批准号:82300398
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
红毛藻多糖通过增加肠道鼠乳杆菌丰度双向调节免疫功能机制研究
- 批准号:32302098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
- 批准号:82303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
- 批准号:
10659299 - 财政年份:2023
- 资助金额:
$ 78.12万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 78.12万 - 项目类别:
CranioRate: An imaging-based, deep-phenotyping analysis toolset, repository, and online clinician interface for craniosynostosis
CranioRate:基于成像的深度表型分析工具集、存储库和在线临床医生界面,用于颅缝早闭
- 批准号:
10568654 - 财政年份:2023
- 资助金额:
$ 78.12万 - 项目类别:
Ultra-High Performance Brain-dedicated PET scanner for Neurology and Neuro-oncology imaging
用于神经病学和神经肿瘤学成像的超高性能大脑专用 PET 扫描仪
- 批准号:
10737257 - 财政年份:2023
- 资助金额:
$ 78.12万 - 项目类别:
SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
- 批准号:
10816764 - 财政年份:2023
- 资助金额:
$ 78.12万 - 项目类别: