Multi-scale modeling of infectious diseases in fluctuating environments
波动环境中传染病的多尺度建模
基本信息
- 批准号:7901376
- 负责人:
- 金额:$ 26.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:Communicable DiseasesComputing MethodologiesDataDiseaseDisease modelEnvironmentEpidemiologyExtinction (Psychology)HealthImmunologyInterdisciplinary StudyLeadLifeMethodsModelingMonitorNaturePopulationPopulation DynamicsQuarantineResearchResearch ProposalsResourcesScheduleSolutionsSystemSystems BiologyVaccinesVisionWorkdesigndisease transmissiondisorder controlimprovedinsightmathematical modelmulti-scale modelingpublic health relevancetheoriestool
项目摘要
DESCRIPTION (provided by applicant): The objective of this proposal is to develop new mathematical models of infectious disease transmission that effectively, capture the impact of stochasticity on dynamics and lead to more effective control. The group will study the dynamics of disease spread in fluctuating environments modeled at various population scales. First, the group will develop a new class of stochastic metapopulation models for disease spread, noting the importance of stochastic effects in the dynamics. These models capture new types of solutions that cannot be realized in deterministic models, such as disease extinction. The group proposes to develop new mathematical and computational methods for designing and analyzing this class of models. The group will also model various delivery schedules of vaccines into populations. By assuming limited resources, such as constrained vaccine supply or quarantine-type contact control, the results from these models will lead to practical solutions for experimentalists and poUcy makers. The project will lead to greater insight into the mechanisms that allow a disease to successfully propagate in a population, as well as new mathematical tools to analyze stochastic systems. In our long term vision for this project, the group will contribute new mathematical tools to the field of epidemiology. These tools will be motivated by improved models of real world problems, which lead to better ways to design optimization methods. Our work is driven by real epidemiological threats, is derived from data collected from around the world, and is focused on answering questions that could save lives. There is an excitement about the impact of interdisciplinary research efforts combining mathematical fields, such as nonlinear analysis, stochastic d3Tiamics, and network theory, with systems biology approaches such as population dynamics, epidemiology, and immunology. This proposal describes ways in which modeling can open new research directions in all of these fields. PUBLIC HEALTH RELEVANCE: Noting the collaborative nature of this research proposal, we expect that this project will produce findings that could improve health standards across the world. It may lead to improved methods of disease control and health monitoring.
描述(由申请人提供):该提案的目的是开发新的传染病传播数学模型,这些模型有效地捕获随机性对动态的影响并导致更有效的控制。该小组将研究以各种种群量表建模的波动环境中疾病传播的动力学。首先,该小组将开发出新的疾病扩散的随机化种群模型,并指出随机效应在动力学中的重要性。这些模型捕获了在确定性模型(例如疾病灭绝)中无法实现的新型解决方案。该小组建议开发新的数学和计算方法,以设计和分析此类模型。该小组还将将疫苗的各种输送时间表建模为种群。通过假设有限的资源,例如受限的疫苗供应或隔离型接触控制,这些模型的结果将为实验者和Poucy制造商提供实用的解决方案。该项目将进一步了解允许疾病在人群中成功传播的机制,以及分析随机系统的新数学工具。在我们对该项目的长期愿景中,该小组将为流行病学领域贡献新的数学工具。这些工具将由改进的现实世界问题模型来激励,这会导致设计优化方法的更好方法。我们的工作是由真正的流行病学威胁驱动的,是从世界各地收集的数据中得出的,并专注于回答可以挽救生命的问题。关于将数学领域的跨学科研究工作的影响(例如非线性分析,随机D3Tiamics和网络理论)与系统生物学方法(例如人群动态,流行病学和免疫学方法)相结合的兴奋。该建议描述了建模可以在所有这些领域打开新的研究方向的方法。公共卫生相关性:注意这项研究建议的协作性质,我们希望该项目将产生可以改善全球健康标准的发现。它可能导致改进的疾病控制和健康监测方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lora Billings其他文献
Lora Billings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lora Billings', 18)}}的其他基金
Multi-scale modeling of infectious diseases in fluctuating environments
波动环境中传染病的多尺度建模
- 批准号:
8127819 - 财政年份:2009
- 资助金额:
$ 26.46万 - 项目类别:
相似国自然基金
耦合气象卫星数据与三维大气传输过程的还原氮沉降优化计算方法研究
- 批准号:42371324
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向多源异构物联网的高效安全数据融合与计算方法研究
- 批准号:62372324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多批次多样本蛋白质组数据比较整合分析的计算方法学研究
- 批准号:32370705
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于力学机制的数据驱动软材料粘弹性本构建模及计算方法
- 批准号:12372194
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
面向超大图数据分析的多样本分布式计算方法与算法研究
- 批准号:62372308
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
- 批准号:
10793008 - 财政年份:2023
- 资助金额:
$ 26.46万 - 项目类别:
Systems Epigenomics of Persistent Bloodstream Infection
持续性血流感染的系统表观基因组学
- 批准号:
10551703 - 财政年份:2023
- 资助金额:
$ 26.46万 - 项目类别:
Modelled estimation of population immunity for coccidioidomycosis and the role of immunologically naïve populations in the shifting epidemiology of coccidioidomycosis in California
球孢子菌病人群免疫力的模型估计以及免疫学上未接触过的人群在加利福尼亚州球孢子菌病流行病学变化中的作用
- 批准号:
10740731 - 财政年份:2023
- 资助金额:
$ 26.46万 - 项目类别:
Unraveling the functional diversity of B cells in health and disease
揭示 B 细胞在健康和疾病中的功能多样性
- 批准号:
10726375 - 财政年份:2023
- 资助金额:
$ 26.46万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 26.46万 - 项目类别: