Structural Variation and Hematological Traits

结构变异和血液学特征

基本信息

  • 批准号:
    10657020
  • 负责人:
  • 金额:
    $ 76.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Red blood cells, white blood cells, and platelets are important for the clinical diagnosis of intrinsic blood cell and hematopoietic disorders, and also as predictors of various heart, lung, and blood disease outcomes. Moreover, hematologic quantitative traits are highly heritable and serve as a model system for studying the genetic architecture of complex traits. While significant strides in understanding the genetic basis of hematological traits have been made over the past decade, the wealth of whole genome sequencing (WGS) data from emerging resources such as the NHLBI Trans-Omics for Precision Medicine (TOPMed) program provides an unprecedented opportunity to gain further insight in several key areas, including the role of structural variants (SVs). While a few common SVs (e.g., α-globin) are known to be associated with blood cell traits, a more systematic and agnostic genome-wide search for SVs in large samples is required to identify new biology. The centralized availability of deeply sequenced DNA from the NHLBI TOPMed and the NHGRI Centers for Common Disease Genomics (CCDG) programs, along with genome-wide data from UK Biobank and other cohorts, allows for full characterization of SVs genome-wide at population-scale. By improving the accuracy of genome-wide SV calling for WGS data as implemented in our new Genvisis software package and by validating candidate causal SVs using state-of-the-art gene-editing technologies in hematopoietic cells, our interdisciplinary approach will facilitate the translation of genetic association findings into mechanistic insights, discover new biology underlying hematopoiesis, and ultimately identify factors that account for individual differences in pathobiology or response to treatments. In Aim 1, using WGS data from TOPMed and CCDG participants, we will apply novel methodology to generate high-quality and more accurate SV calls than the SV calling algorithms currently available for both WGS and existing array data. In Aim 2, we will use the newly generated SV calls to conduct single-variant and gene-based segmental association analyses of SVs with blood cell traits and related clinical outcomes in up to 570,319 participants. Association findings will be replicated in up to 760,000 participants in populations/studies not used in the discovery phase. SVs that are significantly associated with blood cell traits will subsequently be tested for association with other blood disorders including clonal hematopoiesis of indeterminate potential (CHIP) and VTE. In Aim 3, targeted long-range sequencing will be performed in selected samples to precisely localize newly identified blood trait-associated SVs in complex genomic regions. We will also perform functional genomic annotation of replicated blood cell trait-SV associations followed by state-of-the art gene-editing approaches to understand novel mechanisms underlying genetic regulation of hematopoiesis. This model integrative approach to advancing precision medicine research in heart, lung, and blood diseases will demonstrate for the first time the role of SVs in the genetic architecture of hematologic traits and contribute to a better understanding of hematopoiesis and pave the way for new research into Precision Medicine for blood diseases.
红细胞、白细胞和血小板对于内在血细胞和血小板的临床诊断很重要。 造血系统疾病,也可作为各种心脏、肺和血液疾病结果的预测因子。 血液数量性状具有高度遗传性,可作为研究遗传性状的模型系统。 复杂性状的结构,同时在理解血液学性状的遗传基础方面取得了重大进展。 在过去的十年里,新兴的全基因组测序(WGS)数据的财富 NHLBI 精准医学跨组学 (TOPMed) 计划等资源提供了 前所未有的机会,可以进一步了解几个关键领域,包括结构变异的作用 (SV) 虽然已知一些常见的 SV(例如 α-珠蛋白)与血细胞特征相关,但更多的 SV 与血细胞特征相关。 需要对大样本中的 SV 进行系统且不可知的全基因组搜索,以识别新的生物学特性。 从 NHLBI TOPMed 和 NHGRI 共同中心集中获取深度测序的 DNA 疾病基因组学 (CCDG) 计划以及来自英国生物银行和其他队列的全基因组数据使得 通过提高全基因组 SV 的准确性,在群体范围内全面表征全基因组 SV。 调用我们新的 Genvisis 软件包中实施的 WGS 数据并验证候选因果关系 SV 在造血细胞中使用最先进的基因编辑技术,我们的跨学科方法将 促进将遗传关联发现转化为机制见解,发现新的生物学基础 造血,并最终确定导致病理生物学或反应个体差异的因素 在目标 1 中,我们将使用 TOPMed 和 CCG 参与者的 WGS 数据应用新的方法。 与当前适用于两者的 SV 调用算法相比,可以生成高质量且更准确的 SV 调用 在目标 2 中,我们将使用新生成的 SV 调用进行 WGS 和现有阵列数据。 基于基因的 SV 与血细胞特征和相关临床结果的分段关联分析 570,319 名参与者的协会调查结果将被复制到多达 760,000 名人群/研究参与者中。 与血细胞特征显着相关的 SV 将随后被用于发现阶段。 测试与其他血液疾病的关联,包括不确定潜力的克隆造血 (CHIP) 在目标 3 中,将在选定的样本中进行靶向长程测序以精确定位。 我们还将在复杂的基因组区域中进行新发现的与血液性状相关的 SV。 对复制的血细胞特征-SV 关联进行注释,然后采用最先进的基因编辑方法 了解造血遗传调控的新机制。该模型综合方法。 推进心脏、肺和血液疾病精准医学研究将首次展示 SV 在血液学性状遗传结构中的作用,有助于更好地理解 造血并为血液疾病精准医学的新研究铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Evan Bauer其他文献

Daniel Evan Bauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Evan Bauer', 18)}}的其他基金

Chemotherapy-free cure of hemoglobin disorders through base editing
通过碱基编辑无需化疗即可治愈血红蛋白疾病
  • 批准号:
    10754114
  • 财政年份:
    2023
  • 资助金额:
    $ 76.56万
  • 项目类别:
Targeting ZNF410 for HbF reactivation
靶向 ZNF410 进行 HbF 重新激活
  • 批准号:
    10608727
  • 财政年份:
    2023
  • 资助金额:
    $ 76.56万
  • 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
  • 批准号:
    10627940
  • 财政年份:
    2021
  • 资助金额:
    $ 76.56万
  • 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
  • 批准号:
    10296877
  • 财政年份:
    2021
  • 资助金额:
    $ 76.56万
  • 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
  • 批准号:
    10296877
  • 财政年份:
    2021
  • 资助金额:
    $ 76.56万
  • 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
  • 批准号:
    10473734
  • 财政年份:
    2021
  • 资助金额:
    $ 76.56万
  • 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
  • 批准号:
    10090251
  • 财政年份:
    2020
  • 资助金额:
    $ 76.56万
  • 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
  • 批准号:
    10338097
  • 财政年份:
    2020
  • 资助金额:
    $ 76.56万
  • 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
  • 批准号:
    10317505
  • 财政年份:
    2020
  • 资助金额:
    $ 76.56万
  • 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
  • 批准号:
    10580862
  • 财政年份:
    2020
  • 资助金额:
    $ 76.56万
  • 项目类别:

相似国自然基金

基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
  • 批准号:
    72271152
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目

相似海外基金

A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 76.56万
  • 项目类别:
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
  • 批准号:
    10797460
  • 财政年份:
    2023
  • 资助金额:
    $ 76.56万
  • 项目类别:
Unraveling the Neural Bases of Body Schema
揭开身体图式的神经基础
  • 批准号:
    10696706
  • 财政年份:
    2023
  • 资助金额:
    $ 76.56万
  • 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 76.56万
  • 项目类别:
Orientation Processing Deficits in Amblyopia: Neural Bases to Functional Implications
弱视的定向处理缺陷:神经基础到功能意义
  • 批准号:
    10649039
  • 财政年份:
    2023
  • 资助金额:
    $ 76.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了