Real time risk prognostication via scalable hazard trees and forests
通过可扩展的危险树和森林进行实时风险预测
基本信息
- 批准号:10655749
- 负责人:
- 金额:$ 55.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmericanBenchmarkingCessation of lifeCodeComputer softwareDataDevicesDialysis procedureDiseaseElectronic Health RecordEnsureEventGoalsHazard ModelsHeartHeart TransplantationHeart failureIndividualInformation TechnologyKidney FailureLearningLibrariesMachine LearningMeasurementMethodologyMethodsModelingModernizationMulticenter StudiesOrgan failurePatientsPerformanceProceduresPrognosisRiskRisk AssessmentSurvival AnalysisSystemTimeTreesUpdateWritingadverse outcomecomorbiditycostdata complexitydemographicsflexibilityforesthazardhealth datahemodynamicsimplantationimprovedinnovationleft ventricular assist devicemachine learning methodmechanical circulatory supportmortalitynovel strategiesopen sourcepersonalized risk predictionplatform-independentpopulation healthportabilitypredictive modelingprognosticationrisk predictionrisk prediction modelstatisticssuccesstooluser friendly softwareuser-friendlyweb page
项目摘要
Project Summary/Abstract
Wearable sensing devices and Electronic Health Records (EHRs) are some examples of emerging
information technologies expected to generate huge volumes of data recording individual’s health data over
time. If properly utilized, these data provide a treasure trove of information for building real-time warning
systems for adverse outcomes and to construct individualized risk prediction. To model the dynamic
changes of covariate effects, time-varying survival models have emerged as a powerful approach. To deal with
the size and complexity of data, with potential interactions among large number of variables, and interactions
with time itself, we propose a state of the art machine learning approach using hazard trees and forests for
estimating flexible hazard models with time-dependent covariates. Scalable and user friendly open source
software implementing the methodology will be developed and made publicly available. The software will be
applied to a rich, multicenter study of heart failure patients listed for heart transplantation to develop a state of
the heart hazard risk prediction model.
项目概要/摘要
可穿戴传感设备和电子健康记录 (EHR) 是新兴技术的一些例子
信息技术预计将产生大量记录个人健康数据的数据
如果利用得当,这些数据将为构建实时预警提供信息宝库。
不良结果的系统并构建个性化风险预测对动态进行建模。
时变生存模型已成为应对协变量效应变化的有效方法。
数据的大小和复杂性,大量变量之间的潜在相互作用以及相互作用
随着时间的推移,我们提出了一种最先进的机器学习方法,使用危险树和森林来进行
估计具有时间相关协变量的灵活危险模型可扩展且用户友好的开源。
将开发并公开实施该方法的软件。
应用于一项内容丰富的多中心研究,对象是接受心脏移植的心力衰竭患者,以形成一种状态
心脏危险风险预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hemant Ishwaran其他文献
Hemant Ishwaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hemant Ishwaran', 18)}}的其他基金
相似海外基金
Exercise adherence and cognitive decline: Engaging with the Black community to develop and test a goal-setting and exercise intensity intervention
运动坚持和认知能力下降:与黑人社区合作制定和测试目标设定和运动强度干预措施
- 批准号:
10767102 - 财政年份:2023
- 资助金额:
$ 55.74万 - 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 55.74万 - 项目类别:
Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
- 批准号:
10644648 - 财政年份:2023
- 资助金额:
$ 55.74万 - 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 55.74万 - 项目类别:
Testing Cerebroprotective Interventions with Rodent Ischemic Stroke Models
用啮齿动物缺血性中风模型测试脑保护干预措施
- 批准号:
10588601 - 财政年份:2023
- 资助金额:
$ 55.74万 - 项目类别: