Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
基本信息
- 批准号:10656719
- 负责人:
- 金额:$ 10.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-12 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdmixtureAdverse drug eventAdverse eventAffectAfrican AmericanAfrican American populationAlgorithmsAnticoagulantsAsianAwardCYP2C9 geneCardiovascular DiseasesCharacteristicsClinicalClinical ResearchComplexDNADataDoseDrug PrescriptionsDrug ReceptorsElectronic Health RecordEnzymesEpigenetic ProcessEthnic groupEuropeanFosteringFrequenciesFundingGene FrequencyGenerationsGenesGeneticGenomeGenomicsGenotypeGuidelinesHaplotypesHispanicIndividualInvestigationLatinoLatino PopulationMachine LearningMedical ResearchMinority GroupsMissionNative American AncestryOutcomeParticipantPatient Self-ReportPatientsPatternPerformancePharmaceutical PreparationsPharmacogeneticsPharmacogenomicsPharmacologic SubstancePharmacotherapyPopulationPopulation HeterogeneityPublic HealthRaceResearchResearch Project GrantsSafetySourceTestingTherapeuticToxic effectTranslatingUnited StatesUnited States National Institutes of HealthVariantWarfarinWorkclinically relevantcohortdisparity eliminationdisparity reductiondrug efficacyethnic diversitygenetic associationgenome wide association studygenomic dataimprovedmedically underservedmedication safetymicrobiomenovelracial and ethnicracial disparityresponsesocial health determinantstraittreatment disparity
项目摘要
ABSTRACT
Currently available pharmacogenomic (PGx) algorithms have critical limitations, including a lack of
generalizability to non-white populations. Under-representation in clinical studies, the propensity to cause
adverse events, and a lack of consideration of admixed populations in clinical PGx guidelines are all factors that
contribute to limited utility of PGx algorithms in diverse populations. Thus, our originally awarded proposal
focused on improving warfarin stable dose prediction, as it continues to remain one of the most prescribed drugs
in the United States and a leading cause of adverse drug events particularly in underserved patients such as
African Americans (AAs) and Latinos. Preliminary results from this proposal demonstrate that generation of local
ancestry (LA) estimates enables inclusion of admixed populations and improves power in genetic association
studies on diverse and admixed populations. Thus, we seek to expand upon our original proposal to perform
more inclusive pharmacogenetic studies by generating LA estimates in the large, racially/ethnically diverse
AllofUs cohort. We will investigate the relationships between LA and PGx variants and showcase the utility of LA
estimates and the AllofUs cohort by identifying novel PGx variants associated with warfarin stable dose. Our
overarching hypothesis is that LA can be used to enable genomic association analyses that are more inclusive
of admixed and diverse cohorts and to uncover novel findings that were previously overlooked in ancestrally
European populations. We will pursue two Specific Aims (SAs) to test this hypothesis: (SA1) Characterize LA
for major pharmacogenes and its correlation with global ancestry and PGx variants in diverse populations from
AllofUs and; (SA2) Leverage LA to identify novel PGx variants related to warfarin stable dose in admixed AllofUs
participants. In SA1, We will estimate LA using RFMix from genome array and sequencing data in the AllofUs
Controlled Tier. We will test if LA at clinically relevant pharmacogenes correlates with patient-level global
ancestry and presence of clinically relevant pharmacogenomic variants. In SA2, we will incorporate LA estimates
from SA1 into genome-wide association analyses for warfarin stable dose using Tractor while controlling for
clinical characteristics and clinically relevant PGx variants in admixed individuals from AllofUs, including
Hispanic, AA, and multi-race individuals. The outcomes of this work will provide a framework for LA investigation
with other PGx drug-gene pairs and enable the identification of novel PGx variants that affect drug response in
medically underserved, diverse populations. This research has the potential to identify new sources of variability
in warfarin dose, improve the safety and efficacy of warfarin treatment, and reduce disparities in PGx research
for medically underserved patients.
抽象的
目前可用的药物基因组 (PGx) 算法具有严重的局限性,包括缺乏
对非白人群体的普遍适用性。临床研究中代表性不足,导致
不良事件以及临床 PGx 指南中缺乏对混合人群的考虑都是导致
导致 PGx 算法在不同人群中的实用性有限。因此,我们最初获奖的提案
专注于改善华法林稳定剂量预测,因为它仍然是最常用的药物之一
在美国,它是药物不良事件的主要原因,特别是在服务不足的患者中,例如
非裔美国人 (AA) 和拉丁裔美国人。该提案的初步结果表明,本地
血统 (LA) 估计能够纳入混合群体并提高遗传关联的能力
对多样化和混合人群的研究。因此,我们寻求扩展我们最初的提议来执行
通过在大型、种族/民族多样化的群体中生成 LA 估计值,进行更具包容性的药物遗传学研究
我们所有人的队列。我们将研究 LA 和 PGx 变体之间的关系并展示 LA 的实用性
通过识别与华法林稳定剂量相关的新的 PGx 变异来估计和 AllofUs 队列。我们的
总体假设是 LA 可用于实现更具包容性的基因组关联分析
混合和多样化的群体,并发现以前在祖先中被忽视的新发现
欧洲人口。我们将追求两个具体目标 (SA) 来检验这一假设: (SA1) 描述洛杉矶的特征
主要药物基因及其与全球血统和 PGx 变异在不同人群中的相关性
我们所有人以及; (SA2) 利用 LA 识别与混合 AllofUs 中华法林稳定剂量相关的新型 PGx 变体
参与者。在 SA1 中,我们将使用 RFMix 根据 AllofUs 中的基因组阵列和测序数据估计 LA
受控层。我们将测试临床相关药物基因的 LA 是否与患者水平的整体相关
临床相关药物基因组变异的血统和存在。在 SA2 中,我们将纳入 LA 估算
使用 Tractor 从 SA1 进行华法林稳定剂量的全基因组关联分析,同时控制
AllofUs 混合个体的临床特征和临床相关 PGx 变异,包括
西班牙裔、AA 和多种族人士。这项工作的成果将为洛杉矶调查提供一个框架
与其他 PGx 药物基因对,并能够识别影响药物反应的新型 PGx 变体
医疗服务不足,人口多样化。这项研究有可能识别新的变异来源
华法林剂量,提高华法林治疗的安全性和有效性,并减少 PGx 研究的差异
对于医疗服务不足的患者。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PharmGKB summary: heparin-induced thrombocytopenia pathway, adverse drug reaction.
PharmGKB总结:肝素诱导的血小板减少途径、药物不良反应。
- DOI:
- 发表时间:2022-04-01
- 期刊:
- 影响因子:0
- 作者:Miller, Elise;Norwood, Charles;Giles, Jason B;Huddart, Rachel;Karnes, Jason H;Whirl;Klein, Teri E
- 通讯作者:Klein, Teri E
Elucidation of Cellular Contributions to Heparin-Induced Thrombocytopenia Using Omic Approaches.
使用组学方法阐明细胞对肝素诱导的血小板减少症的贡献。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Giles, Jason B;Miller, Elise C;Steiner, Heidi E;Karnes, Jason H
- 通讯作者:Karnes, Jason H
Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension.
挖掘血浆蛋白质组以深入了解肺动脉高压的分子病理学。
- DOI:
- 发表时间:2022-06-15
- 期刊:
- 影响因子:24.7
- 作者:Harbaum, Lars;Rhodes, Christopher J;Wharton, John;Lawrie, Allan;Karnes, Jason H;Desai, Ankit A;Nichols, William C;Humbert, Marc;Montani, David;Girerd, Barbara;Sitbon, Olivier;Boehm, Mario;Novoyatleva, Tatyana;Schermuly, Ralph T;Ghofrani, H A
- 通讯作者:Ghofrani, H A
Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans.
机器学习预测美国拉丁裔和拉丁美洲人的稳定华法林剂量。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Steiner, Heidi E;Giles, Jason B;Patterson, Hayley Knight;Feng, Jianglin;El Rouby, Nihal;Claudio, Karla;Marcatto, Leiliane Rodrigues;Tavares, Leticia Camargo;Galvez, Jubby Marcela;Calderon;Sun, Xiaoxiao;Hutz, Mara H;Scott
- 通讯作者:Scott
Mendelian randomisation and experimental medicine approaches to interleukin-6 as a drug target in pulmonary arterial hypertension.
孟德尔随机化和实验医学方法将白细胞介素 6 作为肺动脉高压的药物靶点。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Toshner, Mark;Church, Colin;Harbaum, Lars;Rhodes, Christopher;Villar Moreschi, Sofia S;Liley, James;Jones, Rowena;Arora, Amit;Batai, Ken;Desai, Ankit A;Coghlan, John G;Gibbs, J Simon R;Gor, Dee;Gräf, Stefan;Harlow, Louise;Hernandez
- 通讯作者:Hernandez
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hansen Karnes其他文献
Jason Hansen Karnes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Hansen Karnes', 18)}}的其他基金
Discovery of Immunogenomic Associations with Disease and Differential Risk Across Diverse Populations
发现免疫基因组与不同人群的疾病和差异风险的关联
- 批准号:
10796657 - 财政年份:2023
- 资助金额:
$ 10.68万 - 项目类别:
Precision Medicine for All of Us Researchers Collective Medicina de Precision: Colectivo de Investigadores Salud para Todos
为我们所有研究人员提供的精准医学 Collective Medicina de Precision: Colectivo de Investigadores Salud para Todos
- 批准号:
10891233 - 财政年份:2023
- 资助金额:
$ 10.68万 - 项目类别:
ABO and Immunogenetic Variation in the Pathogenesis of Heparin-Induced Thrombocytopenia
肝素诱导的血小板减少症发病机制中的 ABO 和免疫遗传学变异
- 批准号:
10653005 - 财政年份:2022
- 资助金额:
$ 10.68万 - 项目类别:
ABO and Immunogenetic Variation in the Pathogenesis of Heparin-Induced Thrombocytopenia
肝素诱导的血小板减少症发病机制中的 ABO 和免疫遗传学变异
- 批准号:
10439313 - 财政年份:2022
- 资助金额:
$ 10.68万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10270784 - 财政年份:2021
- 资助金额:
$ 10.68万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10454235 - 财政年份:2021
- 资助金额:
$ 10.68万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10626114 - 财政年份:2021
- 资助金额:
$ 10.68万 - 项目类别:
Genomic and Transcriptomic Influences on Heparin-Induced Thrombocytopenia
基因组和转录组对肝素诱导的血小板减少症的影响
- 批准号:
10379303 - 财政年份:2019
- 资助金额:
$ 10.68万 - 项目类别:
Genomic and Transcriptomic Influences on Heparin-Induced Thrombocytopenia
基因组和转录组对肝素诱导的血小板减少症的影响
- 批准号:
9899307 - 财政年份:2019
- 资助金额:
$ 10.68万 - 项目类别:
相似国自然基金
基于药品不良事件呈报系统的药靶蛋白预测方法研究
- 批准号:31371344
- 批准年份:2013
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Genetic and social determinants of pharmacological health outcomes in ancestrally diverse populations
祖先不同人群药理健康结果的遗传和社会决定因素
- 批准号:
10578117 - 财政年份:2023
- 资助金额:
$ 10.68万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10270784 - 财政年份:2021
- 资助金额:
$ 10.68万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10454235 - 财政年份:2021
- 资助金额:
$ 10.68万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10626114 - 财政年份:2021
- 资助金额:
$ 10.68万 - 项目类别:
CHARM 2: Chemotherapy for ablation and resolution of mucinous pancreatic cysts: a prospective, randomized, double-blind, multi-center clinical trial
魅力 2:化疗消融和解决粘液性胰腺囊肿:一项前瞻性、随机、双盲、多中心临床试验
- 批准号:
10002201 - 财政年份:2018
- 资助金额:
$ 10.68万 - 项目类别: