Leveraging Omics-Based Computational Approaches to Identify and Validate Novel Therapeutic Candidates for Endometriosis

利用基于组学的计算方法来识别和验证子宫内膜异位症的新治疗候选药物

基本信息

  • 批准号:
    10699970
  • 负责人:
  • 金额:
    $ 41.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT – PROJECT 3 Endometriosis is a common, estrogen-dependent, inflammatory disorder that causes debilitating chronic pelvic pain including severe dysmenorrhea and dyspareunia, infertility, and a reduced quality of life for 176 million women and teens worldwide. Treatment of endometriosis-associated pain is mainly surgical and/or medical. Surgical removal of disease results in 50% relapse of pain within 2-5 years. Medical treatments, largely unchanged over decades, comprise nonsteroidal anti-inflammatory drugs (NSAIDs) and hormones that lower estrogen levels or oppose its actions, and result in variable symptom relief. The development and availability of large-scale genomic, transcriptomic, and other molecular profiling technologies, in combination with the deployment of the network concept of drug targets and the power of phenotypic screening, provide an unprecedented opportunity to advance rational drug repurposing and data-driven development of drug combinations. The goal of Project 3 is to leverage endometriosis transcriptomics data combined with publicly available drug screening data and apply a computational drug-repurposing pipeline to identify single agent and combination therapies from existing drugs based on expression reversal perturbing molecular networks away from disease-associated cellular dysfunction, and validate select drugs in human endometrial cells in vitro and an animal model of endometriosis pain. In Aim 1, we will use transcriptomic-based computational drug- repurposing to identify potential new single agent and combination therapeutics based on expression reversal leveraging public transcriptomics data. Our hypothesis is that the inverse expression profiles between the drug repositioning candidates and the disease signatures will result in therapeutic predictions. In Aim 2, we will determine the capacity of compounds of interest (COIs) to inhibit inflammatory signaling responses in primary human immune and endometrial cells through the use of an ex vivo high-throughput mass-tag barcoding assay. We hypothesize that the most promising COIs identified in silico (Aim 1) will improve endometriosis symptoms by inhibiting pro-inflammatory signaling responses in endometrial and/or immune cells. Finally, in Aim 3 we will determine the efficacy of compounds of interest to alleviate pain in a preclinical endometriosis model. We hypothesize that the COIs identified for the treatment of endometriosis will alter the endometriotic microenvironment to alleviate pain. We anticipate this study will serve as the basis for studies on newly discovered novel targets and drug-repurposing as well as functional validation in endometrial tissue as well as testing in preclinical models, and if successful, clinical trials for endometriosis-associated pain in women. We hope that this novel approach will change the paradigm of “one size fits all” hormonal treatment for endometriosis-associated pelvic pain and expand therapeutic options to new therapies and established therapies repurposed to improve the lives of millions of affected women and teens and expand the research pipeline in this space.
摘要 – 项目 3 子宫内膜异位症是一种常见的雌激素依赖性炎症性疾病,会导致慢性盆腔衰弱 1.76 亿人遭受疼痛,包括严重痛经和性交困难、不孕以及生活质量下降 全世界女性和青少年子宫内膜异位症相关疼痛的治疗主要是手术和/或药物治疗。 手术切除疾病会导致 50% 的疼痛在 2-5 年内复发,主要是药物治疗。 几十年来没有变化,包括非甾体抗炎药 (NSAID) 和降低激素水平的药物 雌激素水平或对抗其作用,并导致不同的症状缓解。 大规模基因组、转录组和其他分子分析技术,结合 药物靶点的网络概念和表型筛选的力量的部署,提供了 推进合理药物再利用和数据驱动药物开发的前所未有的机遇 项目 3 的目标是利用子宫内膜异位症转录组学数据与公开数据相结合。 可用的药物筛选数据并应用计算药物再利用管道来识别单一药物和 基于表达逆转扰乱分子网络的现有药物的联合疗法 消除与疾病相关的细胞功能障碍,并在体外和体外验证人类子宫内膜细胞中的选定药物 在目标 1 中,我们将使用基于转录组学的计算药物-子宫内膜异位症疼痛的动物模型。 基于表达逆转重新利用以确定潜在的新单药和联合疗法 利用公共转录组学数据,我们的假设是药物之间的表达谱相反。 重新定位候选者和疾病特征将导致治疗预测。 确定感兴趣的化合物 (COIs) 抑制原发性炎症信号反应的能力 通过使用离体高通量质量标签条形码检测来检测人类免疫细胞和子宫内膜细胞。 我们寻求在计算机中确定的最有希望的 COIs(目标 1)将改善子宫内膜异位症症状 最后,在目标 3 中,我们将通过抑制子宫内膜和/或免疫细胞中的促炎症信号反应。 确定感兴趣的化合物在临床前子宫内膜异位症模型中减轻疼痛的功效。 发现用于治疗子宫内膜异位症的 COIs 将改变子宫内膜异位症 我们预计这项研究将作为新研究的基础。 发现了子宫内膜组织中的新靶点和药物再利用以及功能验证 在临床前模型中进行测试,如果成功,则进行针对女性子宫内膜异位症相关疼痛的临床试验。 希望这种新颖的方法能够改变“一刀切”的激素治疗模式 子宫内膜异位症相关的盆腔疼痛,并将治疗选择扩展到新的和既定的疗法 重新调整目标以改善数百万受影响妇女和青少年的生活,并扩大以下领域的研究渠道 这个空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marina Sirota其他文献

Marina Sirota的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marina Sirota', 18)}}的其他基金

Leveraging Omics-Based Computational Approaches to Identify and Validate Novel Therapeutic Candidates for Endometriosis
利用基于组学的计算方法来识别和验证子宫内膜异位症的新治疗候选药物
  • 批准号:
    10308250
  • 财政年份:
    2021
  • 资助金额:
    $ 41.2万
  • 项目类别:
Leveraging Omics-Based Computational Approaches to Identify and Validate Novel Therapeutic Candidates for Endometriosis
利用基于组学的计算方法来识别和验证子宫内膜异位症的新治疗候选药物
  • 批准号:
    10458760
  • 财政年份:
    2021
  • 资助金额:
    $ 41.2万
  • 项目类别:
An Integrative Multi-Omics Approach to Elucidate Sex-Specific Differences in Alzheimers Disease
阐明阿尔茨海默病性别特异性差异的综合多组学方法
  • 批准号:
    10434004
  • 财政年份:
    2018
  • 资助金额:
    $ 41.2万
  • 项目类别:
An Integrative Multi-Omics Approach to Elucidate Sex-Specific Differences in Alzheimers Disease
阐明阿尔茨海默病性别特异性差异的综合多组学方法
  • 批准号:
    10172820
  • 财政年份:
    2018
  • 资助金额:
    $ 41.2万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10469678
  • 财政年份:
    2016
  • 资助金额:
    $ 41.2万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10281474
  • 财政年份:
    2016
  • 资助金额:
    $ 41.2万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10685567
  • 财政年份:
    2016
  • 资助金额:
    $ 41.2万
  • 项目类别:
Elucidating the Role of the Genetic and Environmental Determinants of Preterm Birth Using Integrative Computational Approaches
使用综合计算方法阐明早产的遗传和环境决定因素的作用
  • 批准号:
    9324358
  • 财政年份:
    2016
  • 资助金额:
    $ 41.2万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10469678
  • 财政年份:
    2016
  • 资助金额:
    $ 41.2万
  • 项目类别:
Integrative Bioinformatics Core
综合生物信息学核心
  • 批准号:
    10007634
  • 财政年份:
    2016
  • 资助金额:
    $ 41.2万
  • 项目类别:

相似国自然基金

髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
  • 批准号:
    82372496
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
  • 批准号:
    82270081
  • 批准年份:
    2022
  • 资助金额:
    76 万元
  • 项目类别:
    面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dysregulation of Epithelial Metabolism and Regeneration by Sulfite Exposure in Pediatric Ulcerative Colitis
小儿溃疡性结肠炎亚硫酸盐暴露导致上皮代谢和再生失调
  • 批准号:
    10722914
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
Capsular locus deep sequencing to study Klebsiella populations
荚膜位点深度测序研究克雷伯氏菌种群
  • 批准号:
    10679308
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
Role of B cells in controlling Klebsiella pneumoniae associated disease states
B 细胞在控制肺炎克雷伯菌相关疾病状态中的作用
  • 批准号:
    10731411
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
  • 批准号:
    10751870
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
Pooled Optical Imaging, Neurite Tracing, and Morphometry Across Perturbations (POINT-MAP).
混合光学成像、神经突追踪和扰动形态测量 (POINT-MAP)。
  • 批准号:
    10741188
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了