Creating a region- specific biomolecular atlas of the brain of Alzheimer’s disease

创建阿尔茨海默病大脑区域特定的生物分子图谱

基本信息

  • 批准号:
    10698158
  • 负责人:
  • 金额:
    $ 75.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Many diseases of aging, including Alzheimer’s disease (AD) and AD related dementia, have been linked with significant metabolic changes that are regulated by diverse molecular classes. Nodes of the aging- and AD-associated metabolic signature include: (i) General proteomic profile as reflecting changes in protein homeostasis and/or an ongoing neurodegenerative event; (ii) Glycosylation of glycoproteins, as reflecting changes in engagement and trafficking along the secretory pathway, as well as “post-delivery” processing cell- surface glycoproteins; and (iii) Biological membrane lipid composition and general bioactive lipid metabolism. Several studies have shown changes in brain metabolism are not uniform throughout AD progression, with parietal, posterior temporal, and anterior occipital lobes most severely affected. Because of this, broad conclusions about the AD brain following analysis that does not include spatial information may be painting an incomplete picture of AD pathogenesis. Due to the complexity of the brain, spatial distribution as well as functional integrations of the above nodes are warranted to understand both aging of the brain and AD pathophysiology. To perform a more comprehensive analysis of region-specific molecular pattern changes in the AD brain, we propose to employ matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) technology to examine spatial distribution changes of several molecular classes in animal models of AD as well as postmortem brain tissue of late-onset AD (LOAD) patients. The GENERAL HYPOTHESIS of this research is that alteration in the molecular pattern of various biologically relevant molecular classes can reflect or influence the onset and progression of AD. Aim 1 will map region-specific glycan and glycoprotein expression pattern changes in the whole brain tissue sections of AD mouse models and LOAD patient tissue samples. We will create an atlas of the glycoproteome and illuminating changes in glycosylation that could be key in understanding AD pathogenesis. Aim 2 will map lipidome and unsaturated lipid isomers and changes in metabolic signature in the whole brain tissue sections of AD mouse models and LOAD patient tissue samples. The use of innovative double-bond localization chemistry will expand our current understanding of the AD lipidome, revealing a molecular map of not just lipid classes, but specific lipid isomers within the AD brain. Aim 3 will develop technology- and computationally- driven approaches for biomolecule validation, co-localization, and multidimensional correlation. Our proposed machine learning algorithms will enable simultaneous and region-specific correlation of multiple classes of molecules. Our collaborative team’s orthogonal research foci and interdisciplinary expertise will enable us to generate novel mechanistic and translational data that will inform the research community on the progression of aging and AD. The mechanistic component has the potential to yield significant knowledge that can be used to target specific biomolecules and expand our research beyond this RFA.
项目概要 许多衰老疾病,包括阿尔茨海默病 (AD) 和 AD 相关痴呆症,都与衰老相关 具有受不同分子类别调节的显着代谢变化。 AD 相关代谢特征包括: (i) 反映蛋白质变化的一般蛋白质组学特征 (ii) 糖蛋白的糖基化,反映了体内平衡和/或正在进行的神经退行性事件; 沿着分泌途径的参与和运输的变化,以及“交付后”处理细胞 表面糖蛋白;和 (iii) 生物膜脂质成分和一般生物活性脂质代谢。 多项研究表明,在 AD 进展过程中,大脑代谢的变化并不均匀, 因此,顶叶、后颞叶和前枕叶受影响最严重。 根据不包括空间信息的分析得出的有关 AD 大脑的结论可能是错误的 由于大脑的复杂性、空间分布以及AD发病机制的不完整。 上述节点的功能整合有助于理解大脑衰老和 AD 病理生理学对区域特异性分子模式变化进行更全面的分析。 对于 AD 大脑,我们建议采用基质辅助激光解吸/电离质谱成像 (MALDI MSI) 技术,用于检查动物模型中几种分子类别的空间分布变化 AD 以及晚发 AD (LOAD) 患者死后脑组织。 这项研究的一般假设是,各种分子模式的改变 生物学相关的分子类别可以反映或影响 AD 的发生和进展。 绘制整个脑组织切片中区域特异性聚糖和糖蛋白表达模式的变化 AD 小鼠模型和 LOAD 患者组织样本我们将创建糖蛋白组图谱并进行分析。 阐明糖基化的变化可能是理解 AD 发病机制的关键,目标 2 将绘制图谱。 脂质组和不饱和脂质异构体以及整个脑组织切片中代谢特征的变化 AD 小鼠模型和 LOAD 患者组织样本的使用创新的双键定位。 化学将扩大我们目前对 AD 脂质组的理解,揭示不仅仅是脂质的分子图 类,但 AD 大脑内的特定脂质异构体将开发技术和计算。 我们提出的生物分子验证、共定位和多维关联的驱动方法。 机器学习算法将实现多个类别的同时和特定区域的关联 我们的合作团队的正交研究重点和跨学科专业知识将使我们能够 生成新颖的机制和转化数据,为研究界通报进展情况 衰老和 AD 的机械部分有可能产生可用的重要知识。 针对特定生物分子并将我们的研究扩展到 RFA 之外。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LINGJUN LI其他文献

LINGJUN LI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LINGJUN LI', 18)}}的其他基金

Creating a region- specific biomolecular atlas of the brain of Alzheimer’s disease
创建阿尔茨海默病大脑区域特定的生物分子图谱
  • 批准号:
    10516443
  • 财政年份:
    2022
  • 资助金额:
    $ 75.24万
  • 项目类别:
Acquisition of a Dual-Source, High-Performance, Ion Mobility, Quadrupole Time-of-Flight Mass Spectrometry System for Biomedical Research at UW-Madison
威斯康辛大学麦迪逊分校采购双源、高性能、离子淌度、四极杆飞行时间质谱系统用于生物医学研究
  • 批准号:
    10177384
  • 财政年份:
    2021
  • 资助金额:
    $ 75.24万
  • 项目类别:
MULTIPLEX CHEMICAL TAGS FOR HIGH-THROUGHPUT GLYCAN AND GLYCOPEPTIDE QUANTITATION AND CHARACTERIZATION
用于高通量聚糖和糖肽定量和表征的多重化学标签
  • 批准号:
    9755397
  • 财政年份:
    2018
  • 资助金额:
    $ 75.24万
  • 项目类别:
A novel multi-faceted method for large-scale characterization and relative quantitation of citrullinated proteins for biological samples and its application to Alzheimer's disease
一种新的多方面方法,用于生物样品中瓜氨酸蛋白的大规模表征和相对定量及其在阿尔茨海默病中的应用
  • 批准号:
    9763403
  • 财政年份:
    2018
  • 资助金额:
    $ 75.24万
  • 项目类别:
MULTIPLEX CHEMICAL TAGS FOR HIGH-THROUGHPUT GLYCAN AND GLYCOPEPTIDE QUANTITATION AND CHARACTERIZATION
用于高通量聚糖和糖肽定量和表征的多重化学标签
  • 批准号:
    9982677
  • 财政年份:
    2018
  • 资助金额:
    $ 75.24万
  • 项目类别:
DiLeu-enabled multiplexed quantitation for biomarker discovery and validation in Alzheimer’s disease
DiLeu 多重定量用于阿尔茨海默病生物标志物的发现和验证
  • 批准号:
    10586449
  • 财政年份:
    2018
  • 资助金额:
    $ 75.24万
  • 项目类别:
National Center for Quantitative Biology of Complex Systems
国家复杂系统定量生物学中心
  • 批准号:
    10688029
  • 财政年份:
    2016
  • 资助金额:
    $ 75.24万
  • 项目类别:
Mass Defect-based Chemical Tags for Multiplex Glycan Quantitation
用于多重聚糖定量的基于质量缺陷的化学标签
  • 批准号:
    9352747
  • 财政年份:
    2016
  • 资助金额:
    $ 75.24万
  • 项目类别:
Mass Defect-based Chemical Tags for Multiplex Glycan Quantitation
用于多重聚糖定量的基于质量缺陷的化学标签
  • 批准号:
    9167194
  • 财政年份:
    2016
  • 资助金额:
    $ 75.24万
  • 项目类别:
National Center for Quantitative Biology of Complex Systems
国家复杂系统定量生物学中心
  • 批准号:
    10426384
  • 财政年份:
    2016
  • 资助金额:
    $ 75.24万
  • 项目类别:

相似海外基金

Fluorescent probes for detection of misfolded protein oligomers in Alzheimer's Disease and related disorders
用于检测阿尔茨海默病和相关疾病中错误折叠蛋白寡聚体的荧光探针
  • 批准号:
    10604908
  • 财政年份:
    2023
  • 资助金额:
    $ 75.24万
  • 项目类别:
Investigating the Role of p21-Highly Expressing Senescent Cells in Alzheimer's Dementia
研究 p21 高表达衰老细胞在阿尔茨海默氏痴呆中的作用
  • 批准号:
    10606953
  • 财政年份:
    2023
  • 资助金额:
    $ 75.24万
  • 项目类别:
Glymphatic impairment as a crucial factor in particulate matter exposure related development of Alzheimer's disease pathology
类淋巴系统损伤是与颗粒物暴露相关的阿尔茨海默病病理学发展的关键因素
  • 批准号:
    10718104
  • 财政年份:
    2023
  • 资助金额:
    $ 75.24万
  • 项目类别:
Novel regulation of vascular dementia
血管性痴呆的新调节
  • 批准号:
    10716861
  • 财政年份:
    2023
  • 资助金额:
    $ 75.24万
  • 项目类别:
Novel tracers for in vivo studies of waste transport by fluid flows in the brain
用于脑内液体流动废物运输体内研究的新型示踪剂
  • 批准号:
    10732612
  • 财政年份:
    2023
  • 资助金额:
    $ 75.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了