A simulation platform to predict dose and therapeutic window of immunocytokines
预测免疫细胞因子剂量和治疗窗的模拟平台
基本信息
- 批准号:10698708
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAffinityAnti-CEA AntibodyAnti-Inflammatory AgentsAntibodiesAreaAutoimmune DiseasesAvidityBenchmarkingBindingBiological AssayBiological MarkersBiological ProductsCD8B1 geneCalibrationCell CountCellsCharacteristicsChimeric ProteinsClinicClinicalClinical DataClinical TrialsClinical Trials DesignCommunicationCytokine ReceptorsDataDevelopmentDiseaseDisparateDoseDose LimitingDrug KineticsEquilibriumEragrostisEvaluationFlow CytometryFosteringHalf-LifeHealthcareHumanImmuneImmune TargetingImmune responseImmunotherapyIn VitroInflammatoryInflammatory ResponseInterleukin-10Interleukin-12Interleukin-15Interleukin-2Interleukin-4KineticsLeadLinkMalignant NeoplasmsMarketingMeasurableMeasurementMediatingModelingMolecularNatural Killer CellsOncologyOnline SystemsParameter EstimationPatientsPharmaceutical PreparationsPharmacodynamicsPharmacologyPhasePopulationProcessProtein EngineeringPsoriasisRecombinant CytokinesRegimenRegulatory T-LymphocyteReportingRheumatoid ArthritisRiskRunningScanningSelection CriteriaSerumSmall Business Innovation Research GrantSpecificityStructureSystemTestingTherapeuticTimeTissuesToxic effectantibody conjugatearmcancer therapycandidate selectioncell growthcell typeclinical applicationclinical efficacyclinical predictorscohortcommercializationcomputational platformcostcytokinecytokine therapydesigndrug developmentdrug dispositioneffector T cellgraphical user interfacehigh riskimmune activationin silicoin vivointeractive toollead candidatemodels and simulationmultidisciplinarynext generationnovelnovel strategiesnovel therapeuticspharmacokinetics and pharmacodynamicspre-clinicalpredicting responsepredictive modelingreceptorscreeningsimulationsystemic toxicitytooltranslational approachvirtual patientweb app
项目摘要
Project Summary/Abstract
Immunocytokines (ICs) are fusion proteins of an engineered cytokine conjugated to an antibody. These novel molecules
are the next generation of cytokine-based immunotherapies with potential applications in a diverse range of diseases such
as rheumatoid arthritis (RA), psoriasis, and cancer. ICs are designed to selectively target diseased tissue or specific
immune cells with minimal systemic immune activation that typically leads to dose-limiting toxicity in recombinant
cytokine therapy. However, it is challenging to design a molecule with high target specificity, predict its pharmacokinetics
and identify doses that achieve high efficacy but low toxicity, i.e. the therapeutic window.
We are proposing to develop a simulation platform for IC screening that will computationally predict dose and therapeutic
window of novel ICs under development. The platform will implement a quantitative systems pharmacology (QSP) model
that mechanistically describes the binding of an IC to target and off-target cells and links cytokine receptor occupancy to
cellular activation and expansion dynamics. The model will predict in vivo pharmacokinetics (PK) and pharmacodynamics
(PD) for an input dose and dosing regimen of a proposed IC. Simulations will report readouts such as cell counts and
soluble cytokine levels that are clinically observable biomarkers of efficacy and toxicity. The model will be general
enough to simulate pro- and anti-inflammatory ICs. A modular design will allow us to add new cell types and
cytokines/receptors as needed to adequately model the crosstalk between the inflammatory and regulatory arms of the
immune response.
In Phase I of this Fast Track proposal, we will demonstrate the technical feasibility of developing a single mechanistic
QSP model structure that captures drug dose- dependent expansion and contraction of four unique IC molecules. By
fitting preclinical and clinical data for each molecule, we will establish a robust translational strategy for human dose
prediction. In Phase II the platform model will be integrated with and made accessible through Applied BioMath’s
Assess™ browser-based interface. With this setup, users can interactively explore the IC design space and use simulations
to understand the impact of varying dose, dosing interval, target affinities, cytokine potency and drug half-life on clinical
PK/PD. We expect that this interactive tool will foster effective communication within multidisciplinary drug
development teams, and help them rationally identify optimal molecular characteristics and dosing strategies for novel
ICs. The platform will also allow virtual patient cohort simulations to guide selection criteria for clinical trials.
There are currently no effective tools to screen candidate molecules in the IC space. Our proposed computational platform
to predict the optimal dose and therapeutic window of novel ICs will accelerate the lengthy and expensive lead candidate
selection process, and thus lower the cost of IC development, facilitate clinical trial design, reduce late stage attrition and
bring new drugs to the market faster to benefit patient healthcare.
项目概要/摘要
免疫细胞因子 (IC) 是与抗体结合的工程细胞因子的融合蛋白。
是下一代基于细胞因子的免疫疗法,在多种疾病中具有潜在的应用,例如
类风湿性关节炎 (RA)、牛皮癣和癌症等 IC 旨在选择性地针对患病组织或特定部位。
免疫细胞具有最小的全身免疫激活,通常会导致重组中的剂量限制性毒性
然而,设计具有高靶点特异性的分子并预测其药代动力学是具有挑战性的。
并确定实现高效低毒的剂量,即治疗窗。
我们提议开发一个用于 IC 筛选的模拟平台,该平台将通过计算预测剂量和治疗效果
该平台将实施定量系统药理学(QSP)模型。
从机制上描述了 IC 与靶细胞和非靶细胞的结合,并将细胞因子受体占用与
该模型将预测体内药代动力学 (PK) 和药效学。
(PD) 用于建议 IC 的输入剂量和给药方案 模拟将报告细胞计数和给药方案等读数。
可溶性细胞因子水平是临床上可观察到的功效和毒性生物标志物。该模型将是通用的。
足以模拟促炎和抗炎 IC。模块化设计将使我们能够添加新的细胞类型和
根据需要充分模拟炎症和调节臂之间的串扰
免疫反应。
在此快速通道提案的第一阶段,我们将演示开发单一机制的技术可行性
QSP 模型结构可捕获四种独特 IC 分子的药物剂量依赖性扩张和收缩。
拟合每个分子的临床前和临床数据,我们将为人体剂量建立稳健的转化策略
预测在第二阶段,平台模型将与 Applied BioMath 集成并通过其访问。
Assess™ 基于浏览器的界面通过此设置,用户可以交互式地探索 IC 设计空间并使用仿真。
了解不同剂量、给药间隔、靶标亲和力、细胞因子效力和药物半衰期对临床的影响
我们期望这种互动工具将促进多学科药物内部的有效沟通。
开发团队,并帮助他们合理确定新型药物的最佳分子特征和给药策略
该平台还将允许虚拟患者队列模拟来指导临床试验的选择标准。
目前没有有效的工具来筛选 IC 空间中的候选分子。
预测昂贵新型 IC 的最佳剂量和治疗窗口将加速长期领先候选药物的开发
选择过程,从而降低 IC 开发成本,促进临床试验设计,减少后期损耗和
将新药更快地推向市场,以造福患者的医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raibatak Das其他文献
Raibatak Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: