Development and evaluation of a combined X-ray transmission and diffraction imaging system for pathology

用于病理学的组合 X 射线透射和衍射成像系统的开发和评估

基本信息

  • 批准号:
    10699271
  • 负责人:
  • 金额:
    $ 88.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-08 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Pathology, which plays a vital role in clinical diagnosis, faces numerous challenges that impact its efficacy. For example, resected specimens often require preparing and analysis of as many as 30-40 slide blocks under a microscope until the disease is confirmed; selection of slices for slide preparation uses subjective methods such as palpation, which depend greatly on the skill of the individual performing the assessment and introduces inconsistency in the clinical process; and for each slide block examined, analysis and annotation requires manual observation of every microscopic region of the tissue. As a result, most pathology evaluations often take 1-3 weeks to analyze samples and reach a conclusion regarding potential cancers. An added challenge is that insurance reimbursements are capped per case regardless of the number of slide blocks processed, with any additional costs being absorbed by the hospital. Consequently, hospitals must balance the trade-off between minimizing the number of slices (for economic viability) and not compromising diagnostic care. These challenges affect not only clinical pathology but also research involving pathology specimens and tissue selection for biobanking. There is a critical need to eliminate subjectivity, reduce pathologists’ workload, and increase throughput in histological analysis. We propose to meet this need by developing a new technology called X-ray diffraction imaging (XRDI), which can scan any number of surgically resected, sliced pathology specimens and automatically indicate the likelihood and location of disease in each slice within minutes. In collaboration with Duke University, we previously built a research prototype XRDI system and demonstrated its utility by scanning and evaluating 300 breast cancer slices with high accuracy and resolution. In this direct-to-phase-II SBIR application, we will now construct a new clinical version of the XRDI scanner that is affordable, reliable, and accurate, and can be directly integrated into the clinical pathology workflow. We will build the scanner, test and evaluate its performance, and demonstrate its utility through field-testing in collaboration with clinical pathology laboratories in the US. This project will provide a first-of-its-kind, commercially feasible XRDI scanner for rapid, non-destructive imaging of pathology specimens with the ability to inform pathologists about the presence and location of cancer within the different tissue slices. The proposed clinical scanner will enable: 1) analysis of the whole slice volume of the specimen rather than a few microns at the surface of a subset of the slices, which is the current standard of care process using microscopy, 2) quantitative identification of disease based on XRD information obtained directly from the tissue, and 3) slice selection based on quantitative, reproducible measurements, thereby eliminating user-related subjectivity. Importantly, it would significantly speed up pathology workflow, providing decisions within hours instead of days, and improve the productivity and profitability of pathology labs by reducing the number of slide blocks analyzed per case.
抽象的 病理学在临床诊断中发挥着至关重要的作用,面临着影响其疗效的众多挑战。 例如,切除的标本通常需要在一个实验室中准备和分析多达 30-40 个滑块。 显微镜检查直至确认疾病;使用主观方法选择切片进行载玻片制备; 作为触诊,这在很大程度上取决于执行评估的个人的技能并引入 临床过程中的不一致;并且对于每个检查的滑块,分析和注释需要手动 观察组织的每个微观区域因此,大多数病理学评估通常需要 1-3 次。 分析样本并得出有关潜在癌症的结论的另一个挑战是。 无论滑块数量多少,每个案例的保险报销都有上限,任何 额外的费用由医院承担,医院必须在两者之间进行权衡。 最大限度地减少切片数量(为了经济可行性)并且不影响诊断护理这些挑战。 不仅影响临床病理学,还影响涉及病理标本和组织选择的研究 迫切需要消除受试者、减少病理学家的工作量并增加 我们建议通过开发一种称为 X 射线的新技术来满足这一需求。 衍射成像(XRDI),可以扫描任意数量的手术切除、切片的病理标本和 在几分钟内自动指示每个切片中疾病的可能性和位置。 杜克大学,我们之前构建了一个研究原型 XRDI 系统,并通过扫描展示了其实用性 并在这个直接进入 II 期的 SBIR 中以高精度和分辨率评估 300 个乳腺癌切片。 应用程序,我们现在将构建新的临床版本 XRDI 扫描仪,该扫描仪价格实惠、可靠且 准确,并且可以直接集成到临床病理工作流程中。我们将构建扫描仪、测试和分析。 评估其性能,并通过与临床病理学合作的现场测试证明其实用性 该项目将提供首创的、商业上可行的 XRDI 扫描仪,用于快速、 病理标本的无损成像,能够告知病理学家其存在和情况 所提出的临床扫描仪将能够:1)分析癌症在不同组织切片中的位置。 样本的整个切片体积,而不是切片子集表面的几微米,即 当前使用显微镜的护理流程标准,2) 基于 XRD 的疾病定量鉴定 直接从组织获得的信息,以及3)基于定量、可重复的切片选择 测量,从而消除与用户相关的主观性,重要的是,它将显着加快速度。 病理工作流程,在数小时而不是数天内提供决策,并提高生产力和 通过减少每个病例分析的滑块数量来提高病理实验室的盈利能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Greenberg其他文献

Joel Greenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Greenberg', 18)}}的其他基金

Multimodality X-ray transmission and diffraction scanner for molecular analysis of cancer specimens
用于癌症样本分子分析的多模态 X 射线透射和衍射扫描仪
  • 批准号:
    10693406
  • 财政年份:
    2021
  • 资助金额:
    $ 88.76万
  • 项目类别:
Multimodality X-ray transmission and diffraction scanner for molecular analysis of cancer specimens
用于癌症样本分子分析的多模态 X 射线透射和衍射扫描仪
  • 批准号:
    10113151
  • 财政年份:
    2021
  • 资助金额:
    $ 88.76万
  • 项目类别:
Multimodality X-ray transmission and diffraction scanner for molecular analysis of cancer specimens
用于癌症样本分子分析的多模态 X 射线透射和衍射扫描仪
  • 批准号:
    10656798
  • 财政年份:
    2021
  • 资助金额:
    $ 88.76万
  • 项目类别:

相似国自然基金

能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
  • 批准号:
    22373112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
  • 批准号:
    52335001
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
面向量子模拟算法的量子软件优化技术研究
  • 批准号:
    62302395
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
  • 批准号:
    62301029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
凸复合二次锥优化问题的算法及软件研究
  • 批准号:
    12271015
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

SBIR Phase I: Software-Defined Sub-Terahertz Imaging Radar for Algorithmic Agility and All-Weather Transportation Safety
SBIR 第一阶段:软件定义的亚太赫兹成像雷达,实现算法敏捷性和全天候运输安全
  • 批准号:
    2230398
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
Analysis of Somatic Mutations in Longitudinal Whole-genome Sequencing Data
纵向全基因组测序数据中的体细胞突变分析
  • 批准号:
    10836613
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
METEOR-Data Synthesis and Transfer (METEOR-DST)
METEOR-数据合成和传输 (METEOR-DST)
  • 批准号:
    10715025
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
  • 批准号:
    10784983
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了