Real-time, large-area microbial mapping to prevent the spread of healthcare-associated infections
实时、大面积微生物绘图,以防止医疗保健相关感染的传播
基本信息
- 批准号:10698411
- 负责人:
- 金额:$ 27.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Summary Abstract
Healthcare-associated infections (HAIs) are a threat to patient safety. Stopping the spread of HAIs requires prevention,
surveillance, and outbreak investigations. Many hospitals are employing enhanced cleaning protocols, such UV disinfection,
to their standard cleaning protocols, which when properly implemented have been shown to decrease the spread of HAIs.
A significant challenged faced by healthcare providers implementing enhanced cleaning protocols is verifying their efficacy
of these interventions. Sampling using conventional microorganism counting methods, such as culturing and colony-
counting methods, polymerase chain reaction methods, and immunoassay approaches, can be used, but these methods are
labor-intensive, sample only limited areas, and do not provide real-time results. Spectroscopic and spectral imaging
techniques have become popular and attractive due to minimal sample preparation and rapid data acquisition. Fluorescence
spectroscopy uses an ultraviolet light source to excite electrons in molecules in microorganisms and measures the visible
light emitted. Different microorganisms will produce different fluorescence signatures based on their constituent molecules,
such as proteins, vitamins, and coenzymes. Fluorescence spectroscopy tools based on conventional spectrometers are
currently used to quantify the bioburden in pharmaceutical and food production applications. However, these systems based
on conventional spectrometers have a limited sampling area. Applying fluorescence spectroscopy to large areas requires a
hyperspectral imager that measures both spatial and spectral information for each pixel in the image. In laboratory settings,
this hyperspectral imager is typically a scanning image spectrometer, which is bulky, expensive, requires the sample and
sensor to be still, and can take minutes to capture a single image. Nanohmics has developed a solid-state chip-scale
hyperspectral imager that provides real-time full-frame data collection and spatially registered spectral data.
Nanohmics proposes to develop a handheld, extensive-area, real-time fluorescence imaging detector (HEART-FID) to
enable mapping of the bioburden in healthcare settings. The key components of the HEART-FID system are a custom
fluorescence imager with excitation sources controlled by an embedded image acquisition and processing that uses spectral
fingerprints and machine learning to differentiate between bacteria, fungi, and other organic materials. In the Phase I
program, the team will demonstrate that the system can measure different concentrations of target microorganisms on
relevant surfaces typically found in hospitals and compare these results to established methods of microbial monitoring.
The goal of the Phase II program will be the design, optimization, and performance demonstration of a HEART-FID system
that can incorporated into established disinfection routines. The prototype will be advanced to TRL 5-6 over the course of
the Phase II program with the ability image a 100cm x 100cm in less than 10 seconds and distinguish between bacteria,
fungi, and nonharmful organic materials. The system will provide healthcare providers with new data that will allow them
to easily evaluate their cleaning procedures and quickly track and prevent potential outbreaks.
摘要 摘要
医疗保健相关感染 (HAI) 对患者安全构成威胁。阻止 HAI 的传播需要预防,
监测和疫情调查。许多医院正在采用增强的清洁方案,例如紫外线消毒,
事实证明,如果实施得当,可以减少 HAI 的传播。
实施强化清洁方案的医疗保健提供者面临的一个重大挑战是验证其功效
这些干预措施。使用传统的微生物计数方法进行采样,例如培养和菌落计数
可以使用计数方法、聚合酶链反应方法和免疫测定方法,但这些方法都
劳动密集型,仅采样有限区域,并且不提供实时结果。光谱和光谱成像
由于最少的样品制备和快速的数据采集,技术已变得流行且有吸引力。荧光
光谱学利用紫外光源激发微生物分子中的电子并测量可见光
发出光。不同的微生物会根据其组成分子产生不同的荧光特征,
例如蛋白质、维生素和辅酶。基于传统光谱仪的荧光光谱工具有
目前用于量化制药和食品生产应用中的生物负载。然而,这些系统基于
传统光谱仪的采样面积有限。将荧光光谱应用于大面积需要
高光谱成像仪可测量图像中每个像素的空间和光谱信息。在实验室环境中,
这种高光谱成像仪通常是扫描图像光谱仪,其体积大、价格昂贵、需要样品和
传感器保持静止,可能需要几分钟才能捕获单个图像。 Nanoohmics 开发出固态芯片级
高光谱成像仪,提供实时全帧数据收集和空间配准光谱数据。
Nanoohmics 提议开发一种手持式大面积实时荧光成像探测器 (HEART-FID)
在医疗保健环境中绘制生物负载图。 HEART-FID 系统的关键组件是定制的
荧光成像仪,其激发源由使用光谱的嵌入式图像采集和处理控制
指纹和机器学习来区分细菌、真菌和其他有机材料。在第一阶段
项目中,该团队将证明该系统可以测量不同浓度的目标微生物
医院中常见的相关表面,并将这些结果与现有的微生物监测方法进行比较。
第二阶段计划的目标是 HEART-FID 系统的设计、优化和性能演示
可以纳入既定的消毒程序。该原型将在以下过程中提升至 TRL 5-6
第二阶段程序能够在 10 秒内对 100 厘米 x 100 厘米进行成像并区分细菌,
真菌和无害有机材料。该系统将为医疗保健提供者提供新的数据,使他们能够
轻松评估他们的清洁程序并快速跟踪和防止潜在的爆发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Sarik其他文献
John Sarik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
大尺度环流场影响中国地表风速多时间尺度变化的机理研究
- 批准号:42375174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
青少年肌阵挛性癫痫发作控制与复发的脑网络系统动力稳定性大时间尺度演化机制研究
- 批准号:82301640
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可压缩Navier-Stokes/Allen-Cahn方程组解的大时间行为研究
- 批准号:12301266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习的生物大分子大时间尺度采样和分析
- 批准号:32271290
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
时间精准的多尺度大涡模拟方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
- 批准号:
10735863 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Convenient rapid and portable tool for the detection of ribonucleases
用于检测核糖核酸酶的方便、快速、便携的工具
- 批准号:
10760552 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Targeting large-scale networks in depression with real-time fMRI neurofeedback
通过实时功能磁共振成像神经反馈针对抑郁症的大规模网络
- 批准号:
10721968 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
- 批准号:
10600819 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别: