High accuracy automated tick classification using computer vision

使用计算机视觉进行高精度自动蜱分类

基本信息

  • 批准号:
    10699845
  • 负责人:
  • 金额:
    $ 95.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-18 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Abstract. The incidence of US tick-borne diseases has more than doubled in the last two decades. Today, Lyme disease is the most common vector-borne disease in the United States, impacting over half-a-million Americans each year. Due to lack of effective vaccines for tick-borne diseases, prevention of tick bites and early tick bite treatment is the primary focus of disease mitigation. Tick vector surveillance—monitoring an area to understand tick species composition, abundance, and spatial distribution—is key to providing the public with accurate and up-to-date information when they are in areas of high risk, and enabling precision vector control when necessary. Despite the importance of vector surveillance, current practices are highly resource intensive and require significant labor and time to collect and identify vector specimens. Acarologist or field taxonomist expertise is a limited resource required for tick identification, creating a significant capability barrier for national tick surveillance practice. While mobile applications to facilitate passive surveillance and reporting of human-tick encounters have grown in popularity, variable image quality, limited engagement, and scientist misidentification of rare, invasive, or morphologically similar tick species hinder the scalability of this approach. To date, no automated solutions exist to build tick identification capacity. We seek to advance Phase I work that successfully achieved an imaging and automated identification system capable of instantaneously and accurately identifying twelve adult tick species with 98% accuracy. This proposal will first improve the Phase I optical design for scalability to accommodate imaging of additional intra-specific tick species variability as nymphs, adult males, and unfed or engorged adult females. In parallel, we develop methods to optimize quality of guided user imaging of ticks in a mobile app approach for the general public. This will enable the development of a representative image database with partners including TickSpotters, TickCheck, the Walter Reed Biosystems Unit (WRBU), and others. The resulting database will be used to train, validate, test and deploy high-accuracy computer vision models in two tick identification products for professional public health and the general public. Ultimately the approaches developed here will enable vector management organizations to leverage image recognition in a practical system that will increase capacity and capability for biosurveillance, and equip the general public with improved tools to identify ticks during a human-tick encounter.
摘要:在过去的二十年里,美国蜱传疾病的发病率增加了一倍多。 莱姆病是美国最常见的媒介传播疾病,影响超过 每年有 50 万美国人由于缺乏有效的蜱传疾病疫苗而无法预防。 蜱虫叮咬和早期蜱虫叮咬治疗是缓解蜱虫媒介疾病的主要焦点。 监测——监测一个区域以了解蜱的物种组成、丰度和空间 分发——是向公众提供准确和最新信息的关键 尽管矢量很重要,但在必要时启用精确的矢量控制。 监督,目前的做法是高度资源密集型的,需要大量的劳动力和时间 收集和识别媒介标本。蜱虫学家或现场分类学家的专业知识是有限的资源。 蜱虫识别所需,为国家蜱虫监测造成重大能力障碍 移动应用程序促进了人类蜱虫的被动监测和报告。 遭遇越来越受欢迎,图像质量参差不齐,参与度有限,科学家 对稀有、入侵或形态相似的蜱种的错误识别阻碍了这种方法的可扩展性 迄今为止,我们还没有建立自动化解决方案来提高蜱虫识别能力。 第一阶段工作成功实现了成像和自动识别系统,能够 该提案可即时准确地识别 12 种成年蜱虫,准确率达 98%。 将首先改进第一阶段的光学设计,以实现可扩展性,以适应额外的成像 种内蜱种变异,如若虫、成年雄性和未进食或饱食的成年雌性。 与此同时,我们开发了方法来优化移动应用程序中蜱虫引导用户成像的质量 这将使开发具有代表性的图像数据库成为可能。 合作伙伴包括 TickSpotters、TickCheck、Walter Reed Biosystems Unit (WRBU) 等。 由此产生的数据库将用于训练、验证、测试和部署高精度计算机视觉模型 两种蜱虫识别产品最终适用于专业公共卫生和普通大众。 这里开发的方法将使媒介管理组织能够利用图像识别 一个实用的系统,将提高生物监测的能力和能力,并装备一般人 向公众提供改进的工具,以在人类蜱虫遭遇期间识别蜱虫。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Autumn Goodwin其他文献

Autumn Goodwin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Autumn Goodwin', 18)}}的其他基金

I-Corps: Optical design and the development of high accuracy automated tick classification using computer vision
I-Corps:使用计算机视觉进行光学设计和高精度自动蜱分类的开发
  • 批准号:
    10561399
  • 财政年份:
    2022
  • 资助金额:
    $ 95.04万
  • 项目类别:
Optical design and the development of high accuracy automated tick classification using computer vision
使用计算机视觉进行光学设计和高精度自动蜱分类的开发
  • 批准号:
    10325667
  • 财政年份:
    2021
  • 资助金额:
    $ 95.04万
  • 项目类别:

相似国自然基金

基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Accelerating digital cognitive screening for Alzheimer's disease in the Primary Care Setting
加速初级保健机构中阿尔茨海默病的数字认知筛查
  • 批准号:
    10664618
  • 财政年份:
    2023
  • 资助金额:
    $ 95.04万
  • 项目类别:
A Machine Learning Algorithm to Assess Functional "Brain Age" from an In-Home EEG Sleepband
一种通过家用脑电图睡眠带评估功能性“大脑年龄”的机器学习算法
  • 批准号:
    10820286
  • 财政年份:
    2023
  • 资助金额:
    $ 95.04万
  • 项目类别:
A mosaic Down syndrome model system comparing isogenic trisomic/disomic cells to unmask trisomy-21 related genomic, epigenomic, and senescence changes acquired across the lifespan
镶嵌唐氏综合症模型系统比较同基因三体/二体细胞,以揭示在整个生命周期中获得的与 21 三体相关的基因组、表观基因组和衰老变化
  • 批准号:
    10656746
  • 财政年份:
    2023
  • 资助金额:
    $ 95.04万
  • 项目类别:
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
  • 批准号:
    10658688
  • 财政年份:
    2023
  • 资助金额:
    $ 95.04万
  • 项目类别:
i-AKC: Integrated AIRR Knowledge Commons
i-AKC:综合 AIRR 知识共享
  • 批准号:
    10712558
  • 财政年份:
    2023
  • 资助金额:
    $ 95.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了