PDRemote: Automated Telehealth Diagnostics for Remote Parkinson's Monitoring
PDRemote:用于远程帕金森病监测的自动远程医疗诊断
基本信息
- 批准号:7777166
- 负责人:
- 金额:$ 19.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAlgorithmsAreaBradykinesiaCase StudyCell TransplantsClinicClinicalClinical ResearchClinical TrialsComplexComplicationComputer softwareDataDeep Brain StimulationDevelopmentDevicesDiagnosisDiagnosticDyskinetic syndromeEvaluationFigs - dietaryFingersFunctional disorderGrowthHealthHealthcareHome environmentHousingHumanImprove AccessInterventionInvoluntary MovementsLifeLocationMeasuresMedical TechnologyMemoryMinorModificationMonitorMotionMotorMovementMovement DisordersMuscle RigidityOffice VisitsOutcomeOutputParkinson DiseasePatient MonitoringPatientsPatternPharmacologic SubstancePharmacotherapyPhasePopulationProcessQuality of lifeQuestionnairesRadioReportingResearchResearch InfrastructureResolutionSeveritiesSpecialistSymptomsSystemTechnologyTestingTimeTranslatingTranslationsTreatment ProtocolsTremorUnited StatesVisualWireless TechnologyWorkWristbasecostdata acquisitiondata exchangedesignfetus cellhealth disparityimprovedpatient populationprogramsprototypepublic health relevanceresponsesuccesstelehealthtool
项目摘要
DESCRIPTION (provided by applicant): The objective is to design, build, and clinically assess a system for automated telehealth diagnostics for remote Parkinson's disease (PD) monitoring. Currently in the United States, there are approximately 1 million patients living with PD and 50,000 new cases reported each year. However, there is limited access to movement disorder specialist centers for a significant portion of this population (Fig 2) as well as limited opportunity for remote continuous monitoring of motor symptoms to capture complex fluctuation patterns and optimize treatment protocols. The proposed PDRemote" system will integrate an existing advanced wireless movement disorder monitoring technology with a new infrastructure to remotely monitor PD patient symptoms. A repeatable, automated tool to more continuously monitor PD motor symptoms at home and remotely transmit severity reports to a clinician should improve outcomes and decrease costs for disparate patient populations not in close proximity to movement disorder specialists. Major PD symptoms include tremor, bradykinesia, and rigidity. Additionally, dyskinesias or wild involuntary movements as a side effect of drug therapy can be a motor complication. The current standard in evaluating symptoms is the Unified Parkinson's Disease Rating Scale (UPDRS), a qualitative ranking system. The UPDRS motor section includes several movements the patient completes to elicit motor symptoms while a clinician qualitatively assesses the symptoms with a 0 - 4 score. It is normally completed during an office visit to obtain a snapshot of motor symptom severity. Clinicians currently lack effective, affordable technologies that can be easily delivered to PD patients for monitoring symptoms on a more continuous basis as symptoms typically fluctuate during the day as a function of treatment parameters. CleveMed previously developed a compact wireless system to quantify movement disorder symptoms called Kinesia". This previously existing technology will serve as the hardware platform for this proposed program. With only minor hardware upgrades required to fit PDRemote and excellent clinical results to date, this existing base enhances likelihood of project success. While previous work has shown excellent results to objectively quantify symptoms during an in clinic exam, this proposed project will integrate several new features to translate this technology from the clinic to a patient's home. This will provide a clinically deployable evaluation tool that doctors can remotely order and then receive reports detailing a patient's PD symptom severity. The clinical technology resulting from this development will allow PD motor symptoms to be remotely monitored by clinicians on a more continuous basis. This should reduce costs and improve clinical outcomes by providing greater time resolution of symptom fluctuations and improving access to symptom monitoring for disparate populations in remote locations.
PUBLIC HEALTH RELEVANCE: Parkinson's disease is primarily characterized by motor symptoms of tremor, bradykinesia (slowed movements), and rigidity which can be very debilitating, leading to decreased mobility, independence, and quality of life. Clinicians lack quantitative tools for more continuous monitoring that capture how motor symptoms fluctuate during the day in response to treatment protocols to help minimize Parkinson's motor symptoms. PDRemote" will be a repeatable, automated system clinicians will use to remotely monitor PD motor symptoms on a more continuous basis in a patient's home that should improve outcomes and decrease costs especially for disparate patient populations in areas not in close proximity to movement disorder specialists.
描述(由申请人提供):目的是设计,构建和临床评估远程帕金森氏病(PD)监测的自动远程医疗诊断系统。目前在美国,大约有100万例PD患者,每年报告50,000例新病例。但是,对于大部分人群(图2),远程连续监测运动症状以捕获复杂的波动模式并优化治疗方案的远程监测机会有限,并且有限的机会获得了运动障碍专家中心的机会有限。提出的PDREMOTE“系统将将现有的高级无线运动监测技术与新的基础设施整合到远程监控PD患者症状。可重复的,自动化的工具可以更连续监控家里的PD运动症状,并远程向家庭传播严重性报告,并向临床医生降低临床症状的疾病,不包括近距离疾病的疾病,不包括运动障碍,以使疾病的专业范围包括移动症状,以使运动症状包括运动。敏捷和刚性通常在办公室访问期间完成,以获得运动症状严重程度的快照。目前,临床医生缺乏有效的,负担得起的技术,可以轻松地将其传递给PD患者以更连续监测症状,因为症状通常会随着治疗参数而在白天波动。 Clevemed先前开发了一种紧凑的无线系统来量化称为运动障碍的运动障碍症状。对于患者的家,这将提供临床上可部署的评估工具,然后详细说明患者的PD症状严重程度,使PD运动症状可以远程降低临床范围,从而使PD运动症状逐渐降低。位置。
公共卫生相关性:帕金森氏病主要以震颤的运动症状,头肌动症(运动缓慢)和僵化的特征,这可能非常令人衰弱,从而导致流动性,独立性和生活质量下降。临床医生缺乏定量的工具,无法进行更连续的监测,以捕获白天的运动症状在响应治疗方案时如何波动,以帮助最大程度地减少帕金森的运动症状。 PDREMOTE”将是一个可重复的自动化系统临床医生,将用来在患者家中更连续地监测PD运动症状,这应该改善结果并降低成本,尤其是对于不靠近运动障碍专家的地区的不同地区的患者人群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH P GIUFFRIDA其他文献
JOSEPH P GIUFFRIDA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH P GIUFFRIDA', 18)}}的其他基金
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
- 批准号:
7934369 - 财政年份:2009
- 资助金额:
$ 19.94万 - 项目类别:
ParkinStep: Automated PD Gait and Balance Assessment for Optimizing DBS
ParkinStep:用于优化 DBS 的自动 PD 步态和平衡评估
- 批准号:
7746783 - 财政年份:2009
- 资助金额:
$ 19.94万 - 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
- 批准号:
8390622 - 财政年份:2008
- 资助金额:
$ 19.94万 - 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
- 批准号:
7537817 - 财政年份:2008
- 资助金额:
$ 19.94万 - 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
- 批准号:
7922938 - 财政年份:2008
- 资助金额:
$ 19.94万 - 项目类别:
Motor Intention Based Training and Discrimination System
基于运动意图的训练和判别系统
- 批准号:
7404297 - 财政年份:2008
- 资助金额:
$ 19.94万 - 项目类别:
Intelligent Task Assist Device for Motor Control in Cerebral Palsy
脑瘫运动控制智能任务辅助装置
- 批准号:
7109587 - 财政年份:2006
- 资助金额:
$ 19.94万 - 项目类别:
Adapative Wireless Computer Mouse for Movement Disorders
针对运动障碍的自适应无线电脑鼠标
- 批准号:
6883514 - 财政年份:2005
- 资助金额:
$ 19.94万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
CranioRate: An imaging-based, deep-phenotyping analysis toolset, repository, and online clinician interface for craniosynostosis
CranioRate:基于成像的深度表型分析工具集、存储库和在线临床医生界面,用于颅缝早闭
- 批准号:
10568654 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
PA TH2Caregiving: Data-Driven Digital Engagement to Assess and Address the Needs of Family Caregivers
PA TH2Caregiving:数据驱动的数字参与,评估和满足家庭护理人员的需求
- 批准号:
10598028 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
Web-based Pain Coping Skills Training to Improve Pain and Poor Adherence caused by Aromatase Inhibitor-Associated Arthralgia In Breast Cancer Survivors (SKIP-Arthralgia): A Randomized Controlled Trial
基于网络的疼痛应对技能培训,以改善乳腺癌幸存者芳香酶抑制剂相关关节痛引起的疼痛和依从性差(SKIP-关节痛):一项随机对照试验
- 批准号:
10439192 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别:
Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
- 批准号:
10448093 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别:
A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
- 批准号:
10437438 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别: