PDRemote: Automated Telehealth Diagnostics for Remote Parkinson's Monitoring
PDRemote:用于远程帕金森病监测的自动远程医疗诊断
基本信息
- 批准号:7777166
- 负责人:
- 金额:$ 19.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAlgorithmsAreaBradykinesiaCase StudyCell TransplantsClinicClinicalClinical ResearchClinical TrialsComplexComplicationComputer softwareDataDeep Brain StimulationDevelopmentDevicesDiagnosisDiagnosticDyskinetic syndromeEvaluationFigs - dietaryFingersFunctional disorderGrowthHealthHealthcareHome environmentHousingHumanImprove AccessInterventionInvoluntary MovementsLifeLocationMeasuresMedical TechnologyMemoryMinorModificationMonitorMotionMotorMovementMovement DisordersMuscle RigidityOffice VisitsOutcomeOutputParkinson DiseasePatient MonitoringPatientsPatternPharmacologic SubstancePharmacotherapyPhasePopulationProcessQuality of lifeQuestionnairesRadioReportingResearchResearch InfrastructureResolutionSeveritiesSpecialistSymptomsSystemTechnologyTestingTimeTranslatingTranslationsTreatment ProtocolsTremorUnited StatesVisualWireless TechnologyWorkWristbasecostdata acquisitiondata exchangedesignfetus cellhealth disparityimprovedpatient populationprogramsprototypepublic health relevanceresponsesuccesstelehealthtool
项目摘要
DESCRIPTION (provided by applicant): The objective is to design, build, and clinically assess a system for automated telehealth diagnostics for remote Parkinson's disease (PD) monitoring. Currently in the United States, there are approximately 1 million patients living with PD and 50,000 new cases reported each year. However, there is limited access to movement disorder specialist centers for a significant portion of this population (Fig 2) as well as limited opportunity for remote continuous monitoring of motor symptoms to capture complex fluctuation patterns and optimize treatment protocols. The proposed PDRemote" system will integrate an existing advanced wireless movement disorder monitoring technology with a new infrastructure to remotely monitor PD patient symptoms. A repeatable, automated tool to more continuously monitor PD motor symptoms at home and remotely transmit severity reports to a clinician should improve outcomes and decrease costs for disparate patient populations not in close proximity to movement disorder specialists. Major PD symptoms include tremor, bradykinesia, and rigidity. Additionally, dyskinesias or wild involuntary movements as a side effect of drug therapy can be a motor complication. The current standard in evaluating symptoms is the Unified Parkinson's Disease Rating Scale (UPDRS), a qualitative ranking system. The UPDRS motor section includes several movements the patient completes to elicit motor symptoms while a clinician qualitatively assesses the symptoms with a 0 - 4 score. It is normally completed during an office visit to obtain a snapshot of motor symptom severity. Clinicians currently lack effective, affordable technologies that can be easily delivered to PD patients for monitoring symptoms on a more continuous basis as symptoms typically fluctuate during the day as a function of treatment parameters. CleveMed previously developed a compact wireless system to quantify movement disorder symptoms called Kinesia". This previously existing technology will serve as the hardware platform for this proposed program. With only minor hardware upgrades required to fit PDRemote and excellent clinical results to date, this existing base enhances likelihood of project success. While previous work has shown excellent results to objectively quantify symptoms during an in clinic exam, this proposed project will integrate several new features to translate this technology from the clinic to a patient's home. This will provide a clinically deployable evaluation tool that doctors can remotely order and then receive reports detailing a patient's PD symptom severity. The clinical technology resulting from this development will allow PD motor symptoms to be remotely monitored by clinicians on a more continuous basis. This should reduce costs and improve clinical outcomes by providing greater time resolution of symptom fluctuations and improving access to symptom monitoring for disparate populations in remote locations.
PUBLIC HEALTH RELEVANCE: Parkinson's disease is primarily characterized by motor symptoms of tremor, bradykinesia (slowed movements), and rigidity which can be very debilitating, leading to decreased mobility, independence, and quality of life. Clinicians lack quantitative tools for more continuous monitoring that capture how motor symptoms fluctuate during the day in response to treatment protocols to help minimize Parkinson's motor symptoms. PDRemote" will be a repeatable, automated system clinicians will use to remotely monitor PD motor symptoms on a more continuous basis in a patient's home that should improve outcomes and decrease costs especially for disparate patient populations in areas not in close proximity to movement disorder specialists.
描述(由申请人提供):目标是设计、构建和临床评估用于远程帕金森病 (PD) 监测的自动远程医疗诊断系统。目前在美国,大约有 100 万 PD 患者,每年报告 50,000 个新病例。然而,对于该人群中的很大一部分人来说,进入运动障碍专科中心的机会有限(图 2),并且远程连续监测运动症状以捕获复杂的波动模式和优化治疗方案的机会也有限。拟议的“PDRemote”系统将把现有的先进无线运动障碍监测技术与新的基础设施相结合,以远程监测帕金森病患者的症状。一种可重复的自动化工具,可以在家中更连续地监测帕金森病运动症状,并将严重程度报告远程传输给临床医生,这应该得到改进运动障碍的主要症状包括震颤、运动迟缓和强直,此外,药物治疗的副作用可能是运动障碍或剧烈的不自主运动。目前评估症状的标准是统一帕金森病评定量表 (UPDRS),这是一个定性排名系统,UPDRS 运动部分包括患者完成的若干动作以引发运动症状,而临床医生则以 0 - 4 来定性评估症状。通常在就诊期间完成,以获得运动症状严重程度的快照。临床医生目前缺乏有效、负担得起的技术,可以轻松地向 PD 患者提供更连续的症状监测,因为症状通常会随着治疗参数的变化而在白天波动。 CleveMed 之前开发了一种紧凑型无线系统,用于量化运动障碍症状,称为“Kinesia”。这项现有技术将作为该拟议项目的硬件平台。只需进行少量硬件升级即可适应 PDRemote,并且迄今为止具有出色的临床结果,这一现有基础提高了项目成功的可能性。虽然之前的工作在临床检查期间客观量化症状方面取得了优异的结果,但该项目将整合多项新功能,将该技术从诊所转移到患者家中,这将提供临床上的帮助。医生可以远程订购并接收详细描述患者帕金森病症状严重程度的可部署评估工具。这一开发产生的临床技术将使临床医生能够更连续地远程监测帕金森病运动症状,这将降低成本并改善临床。通过提供症状波动的更大时间分辨率并改善偏远地区不同人群获得症状监测的机会来改善结果。
公众健康相关性:帕金森病的主要特征是震颤、运动迟缓(运动缓慢)和僵硬等运动症状,这些症状可能会让人非常衰弱,导致活动能力、独立性和生活质量下降。临床医生缺乏进行更连续监测的定量工具,以捕获运动症状在一天中如何响应治疗方案而波动,以帮助最大限度地减少帕金森氏症的运动症状。 PDRemote”将是一个可重复的自动化系统,临床医生将使用它在患者家中更连续地远程监测帕金森病运动症状,这将改善结果并降低成本,特别是对于距离运动障碍专家不远的地区的不同患者群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH P GIUFFRIDA其他文献
JOSEPH P GIUFFRIDA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH P GIUFFRIDA', 18)}}的其他基金
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
- 批准号:
7934369 - 财政年份:2009
- 资助金额:
$ 19.94万 - 项目类别:
ParkinStep: Automated PD Gait and Balance Assessment for Optimizing DBS
ParkinStep:用于优化 DBS 的自动 PD 步态和平衡评估
- 批准号:
7746783 - 财政年份:2009
- 资助金额:
$ 19.94万 - 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
- 批准号:
8390622 - 财政年份:2008
- 资助金额:
$ 19.94万 - 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
- 批准号:
7537817 - 财政年份:2008
- 资助金额:
$ 19.94万 - 项目类别:
ParkinTune: Automated PD Motor Symptom Assessment for DBS Programming
ParkinTune:用于 DBS 编程的自动 PD 运动症状评估
- 批准号:
7922938 - 财政年份:2008
- 资助金额:
$ 19.94万 - 项目类别:
Motor Intention Based Training and Discrimination System
基于运动意图的训练和判别系统
- 批准号:
7404297 - 财政年份:2008
- 资助金额:
$ 19.94万 - 项目类别:
Intelligent Task Assist Device for Motor Control in Cerebral Palsy
脑瘫运动控制智能任务辅助装置
- 批准号:
7109587 - 财政年份:2006
- 资助金额:
$ 19.94万 - 项目类别:
Adapative Wireless Computer Mouse for Movement Disorders
针对运动障碍的自适应无线电脑鼠标
- 批准号:
6883514 - 财政年份:2005
- 资助金额:
$ 19.94万 - 项目类别:
相似国自然基金
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
CranioRate: An imaging-based, deep-phenotyping analysis toolset, repository, and online clinician interface for craniosynostosis
CranioRate:基于成像的深度表型分析工具集、存储库和在线临床医生界面,用于颅缝早闭
- 批准号:
10568654 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
PA TH2Caregiving: Data-Driven Digital Engagement to Assess and Address the Needs of Family Caregivers
PA TH2Caregiving:数据驱动的数字参与,评估和满足家庭护理人员的需求
- 批准号:
10598028 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
Web-based Pain Coping Skills Training to Improve Pain and Poor Adherence caused by Aromatase Inhibitor-Associated Arthralgia In Breast Cancer Survivors (SKIP-Arthralgia): A Randomized Controlled Trial
基于网络的疼痛应对技能培训,以改善乳腺癌幸存者芳香酶抑制剂相关关节痛引起的疼痛和依从性差(SKIP-关节痛):一项随机对照试验
- 批准号:
10439192 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别:
Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
- 批准号:
10448093 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别:
A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
- 批准号:
10437438 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别: