AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
基本信息
- 批准号:10699457
- 负责人:
- 金额:$ 25.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAdherenceAdverse eventAffectAmericanAntibioticsArtificial IntelligenceAwarenessBehaviorCaliforniaCaregiversCaringCessation of lifeClassificationClinicalClinical DataClinical Decision Support SystemsClinical ResearchCollaborationsComputer softwareCritical CareDataDevelopmentDiagnosisEffectivenessElectronic Health RecordEnsureExpert SystemsFDA approvedFast Healthcare Interoperability ResourcesFeedbackFrequenciesGeneral WardGeographyGoalsHealthHealth Insurance Portability and Accountability ActHealthcare SystemsHospitalizationHospitalsHourInfectionInflammationIntensive Care UnitsInterventionIntuitionLaboratoriesLearningLength of StayLicensingLifeLiquid substanceMachine LearningMeasuresMedical DeviceModelingMorbidity - disease rateNamesNursing AssessmentOrgan failurePatient CarePatient-Focused OutcomesPatientsPatternPattern RecognitionPerformancePharmaceutical PreparationsPhaseProspective StudiesProtocols documentationResearchResearch PersonnelResuscitationRiskSafetySepsisShoulderSpecificitySurveysSyndromeSystemTechnologyTestingTimeUncertaintyUnited States Centers for Medicare and Medicaid ServicesUniversitiesValidationWeightWorkadvanced analyticsantimicrobialcare systemsclinical applicationclinical decision supportcommercializationcostdashboarddata accessdata integrationdesigndiagnostic accuracyevidence basehemodynamicshigh dimensionalityimprovedinnovationmortalitynew technologynext generationnonbinarynovelpatient populationpatient responsepatient safetypersonalized carepredictive modelingpredictive toolsprospectiveprototypequality assuranceresponsetooltreatment responseusabilityweb services
项目摘要
Abstract
Sepsis, a heterogeneous syndrome characterized by whole-body inflammation caused by the body's
response to an infection, is the most expensive and deadly condition treated in hospitals, with over 270,000
cases of sepsis-related deaths in the U.S. alone. The cornerstones of optimal sepsis care are early
recognition accompanied by appropriate antimicrobial therapy, and use of evidence-based hemodynamic
therapies such as fluid resuscitation and vasoactive medications. While data-driven approaches based on
machine learning (ML) have shown promise in finding patterns in high-dimensional clinical data to forecast
sepsis among hospitalized patients, there are no clinically validated and FDA-approved clinical decision
support (CDS) system that can reliably identify patients at risk of developing sepsis. Moreover, existing
ML-based solutions are as good as the quality of the data presented to them, and the presence of outliers
and missingness can have deleterious effects on their performance. For instance, it has been suggested
that such systems are essentially looking over clinician's shoulders-using clinical behavior as the expression
of preexisting intuition and suspicion to generate a prediction. As such, there is a critical need for sepsis
prediction tools that can effectively use the routinely collected EHR data, assess prediction confidence, and
if needed, take necessary steps to gather additional information to reduce prediction uncertainty and
improve diagnostic accuracy without significant demand on the end-users.
This project aims to assess the clinical utility, safety, and efficacy of a novel uncertainty-aware sepsis
prediction system designed and developed in collaboration between UC San Diego Health and Healcisio
Inc., a UCSD start-up focused on scalable development and commercialization of advanced analytical
systems in critically care settings. The Healcisio system is explicitly designed to improve compliance with
the Centers for Medicaid and Medicare Services (CMS) care protocol for sepsis (the SEP1 bundle) and to
address the existing delays and variabilities in determining the sepsis onset time, so that life-saving
antibiotics and hemodynamic support can be delivered in a timely fashion. To maintain software quality
assurance a quality management system (QMS) will be developed to accompany a 510(k) FDA submission
package to demonstrate safety and effectiveness. To enhance hospital quality improvement (QI) teams’
ability to measure impact of earlier recognition and SEP-1 bundle compliance, a novel quality measure
(SEP1+) and a causal impact analysis tool is introduced. Ultimately, the novel technologies developed and
tested under this project will enhance our ability to use advanced analytics to predict adverse events,
assess patients’ response to therapy, and optimize and personalize care at the beside through a rapid-cycle
‘learning healthcare system’ framework.
抽象的
脓毒症是一种异质综合征,其特征是由身体的炎症引起的全身炎症
对感染的反应是医院治疗中最昂贵和最致命的疾病,超过 270,000
仅在美国就有与脓毒症相关的死亡病例 最佳脓毒症治疗的基石是早期治疗。
识别并辅以适当的抗菌治疗,并使用基于证据的血流动力学
液体复苏和血管活性药物等疗法是基于数据驱动的方法。
机器学习 (ML) 在寻找高维临床数据模式以进行预测方面表现出了希望
住院患者败血症,尚无经过临床验证和 FDA 批准的临床决策
支持(CDS)系统,可以可靠地识别有败血症风险的患者。
基于机器学习的解决方案的好坏取决于提供给他们的数据的质量以及异常值的存在
例如,有人提出,缺失可能会对他们的表现产生有害影响。
这些系统本质上是在监视临床医生的肩膀——使用临床行为作为表达
因此,迫切需要利用预先存在的直觉和怀疑来做出预测。
预测工具可以有效地使用常规收集的 EHR 数据、评估预测置信度,以及
如果需要,采取必要措施收集额外信息以减少预测不确定性
提高诊断准确性,而对最终用户没有太大要求。
该项目旨在评估新型不确定性脓毒症的临床实用性、安全性和有效性
加州大学圣地亚哥分校健康中心和 Healcisio 合作设计和开发的预测系统
Inc.,一家加州大学圣地亚哥分校初创公司,专注于高级分析的可扩展开发和商业化
Healcisio 系统的明确设计目的是提高重症监护环境中的依从性。
医疗补助和医疗保险服务中心 (CMS) 脓毒症护理方案(SEP1 捆绑包)以及
解决确定败血症发病时间时存在的延迟和变量问题,以便挽救生命
可以及时提供抗生素和血流动力学支持,以保持软件质量。
确保将开发质量管理体系 (QMS) 以配合 510(k) FDA 提交
提高医院质量改进 (QI) 团队的安全性和有效性。
能够衡量早期认可和 SEP-1 捆绑合规性的影响,这是一种新颖的质量衡量标准
(SEP1+) 和因果影响分析工具最终被开发和引入。
在该项目下进行的测试将增强我们使用高级分析来预测不良事件的能力,
评估患者对治疗的反应,并通过快速周期优化和个性化旁边的护理
“学习医疗保健系统”框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Josef其他文献
Christopher Josef的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimizing the use of noninvasive respiratory support in the Emergency Department
优化急诊科无创呼吸支持的使用
- 批准号:
10591839 - 财政年份:2023
- 资助金额:
$ 25.77万 - 项目类别:
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 25.77万 - 项目类别:
Telehealth-Enhanced Asthma Care for Home after the Emergency Room (TEACH-ER)
急诊室后的远程医疗增强哮喘家庭护理 (TEACH-ER)
- 批准号:
10716458 - 财政年份:2023
- 资助金额:
$ 25.77万 - 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
- 批准号:
10584217 - 财政年份:2023
- 资助金额:
$ 25.77万 - 项目类别: