Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
基本信息
- 批准号:10654616
- 负责人:
- 金额:$ 67.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgeBiochemicalBreastCalibrationCancer EtiologyCancer ModelCancer SurvivorClinical TrialsColorectalColorectal CancerDataDecision MakingDetectionDevelopmentDiagnosisDiseaseEligibility DeterminationEthnic OriginExclusionFemaleFrequenciesGeneral PopulationGoalsHealth Care CostsMalignant NeoplasmsMalignant neoplasm of lungMethodsModelingOutcomePatient-Focused OutcomesPatientsPopulationPopulation HeterogeneityPopulations at RiskPreventive serviceProstateQuality of lifeRaceRadiation therapyRecommendationRecording of previous eventsRecurrenceRegimenRiskScreening for cancerSecond Primary CancersSmokingSmoking HistorySurvivorsTimeTobacco useTreatment Side EffectsUnited StatesWomancancer diagnosiscohortcolorectal cancer screeningcomorbiditycost effectivenesseffectiveness evaluationethnic diversityhigh riskhuman old age (65+)innovationlung cancer screeningmenmodels and simulationmortalitymortality riskmulti-ethnicmulti-racialnovelpopulation basedracial diversityrandomized trialscreeningscreening guidelinessexsurvivorshiptobacco exposure
项目摘要
The goal of the proposal is to identify optimal lung cancer (LC) screening strategies for breast (BC), prostate
(PC), colorectal (CRC) cancer survivors. We will accomplish these goals by developing and validating a novel
Multi-Racial and Ethnic Lung Cancer Model (MELCAM) that will simulate LC development, progression,
screening, treatment, and survival in a multiethnic cancer survivor population. We will then assess the
effectiveness and cost-effectiveness (CE) of different LC screening strategies for these survivors. All together,
there are >6 million BC, CRC and PC survivors in the US, and as these cancers tend to be diagnosed in early
stage, many survivors live for a long time and develop and may die from second cancers. Cancer survivors are
also at increased risk of developing LC due to relatively high rates of smoking (up to 50-60%), age, and
treatment-related side effects. As a result, >15% of LC are diagnosed in cancer survivors, and LC is the top
cause of cancer-related mortality in this population. Little is known about optimal LC screening for cancer
survivors who have been excluded from prior randomized trials (RCT) and have a different harm/benefit ratio
from screening due to competing risk of death from their first cancer and higher burden of comorbidities. Lack
of data to guide decisions about LC screening in cancer survivors has profound negative impact on
survivorship, including under and overuse of LC screening, resulting in worse outcomes and increased
healthcare costs. It is unlikely that RCT assessing the benefits of LC screening for cancer survivors will ever be
conducted. Thus, there is an urgent need to use alternative methods to determine the optimal screening
strategy for these patients. In this study, we propose using simulation modeling, an approach complementary
to RCTs, to assess the harms and benefits of LC screening in cancer survivors. The Specific Aims are to: (1)
Derive and validate a model (MELCAM), based on a well-established framework, to simulate LC screening in
BC, PC and CRC cancer survivors from diverse racial and ethnic backgrounds; (2) Determine the most
effective and CE strategies for LC screening in BC survivors; (3) Identify the optimal LC screening strategies in
PC survivors and determine their CE; and (4) Evaluate the effectiveness and CE of LC screening for CRC
survivors. To achieve these Aims, we will use data from several large, representative, population-based cancer
cohorts and robust harmonization methods to develop, calibrate, and validate MELCAM by incorporating the
development, screening, work-up, treatment and survival of LC in multiethnic survivors of BC, PC and CRC
(Aim 1). We will then use the model to simulate RCTs evaluating the effectiveness (in terms of maximizing
survival, quality of life, and other patient-centered outcomes) and CE of LC screening regimens (eligibility,
frequency and duration) in these cancer survivors (Aims 2-4). The study will be innovative in applying state-of-
the-art modeling approaches to evaluate LC screening in a diverse population of cancer survivors, and results
will have direct implications for the management of a large group of survivors.
该提案的目标是确定乳腺癌 (BC)、前列腺癌的最佳肺癌 (LC) 筛查策略
(PC)、结直肠癌 (CRC) 癌症幸存者。我们将通过开发和验证小说来实现这些目标
多种族和民族肺癌模型 (MELCAM) 将模拟 LC 的发展、进展、
多种族癌症幸存者群体的筛查、治疗和生存。然后我们将评估
针对这些幸存者的不同 LC 筛查策略的有效性和成本效益 (CE)。所有人在一起,
美国有超过 600 万 BC、CRC 和 PC 幸存者,而且这些癌症往往在早期就被诊断出来
在这个阶段,许多幸存者存活了很长一段时间,并可能死于第二种癌症。癌症幸存者是
由于相对较高的吸烟率(高达 50-60%)、年龄和吸烟率,患 LC 的风险也增加
治疗相关的副作用。因此,>15% 的 LC 在癌症幸存者中被诊断出来,并且 LC 是最常见的
该人群中癌症相关死亡的原因。对于癌症的最佳 LC 筛查知之甚少
已被排除在之前的随机试验 (RCT) 之外且具有不同危害/获益比的幸存者
由于首次癌症死亡的竞争风险和较高的合并症负担而无法进行筛查。缺少
指导癌症幸存者 LC 筛查决策的数据对癌症幸存者产生深远的负面影响
生存率,包括 LC 筛查使用不足和过度使用,导致结果更差并增加
医疗费用。评估 LC 筛查对癌症幸存者的益处的 RCT 不太可能
实施。因此,迫切需要使用替代方法来确定最佳筛选
针对这些患者的策略。在本研究中,我们建议使用模拟建模,这是一种补充方法
随机对照试验,评估 LC 筛查对癌症幸存者的危害和益处。具体目标是: (1)
基于完善的框架推导并验证模型 (MELCAM),以模拟 LC 筛选
来自不同种族和民族背景的 BC、PC 和 CRC 癌症幸存者; (2)确定最
对 BC 幸存者进行 LC 筛查的有效和 CE 策略; (3) 确定最佳的 LC 筛选策略
PC幸存者并确定他们的CE; (4) 评估 LC 筛查 CRC 的有效性和 CE
幸存者。为了实现这些目标,我们将使用来自几个大型、有代表性、基于人群的癌症的数据
队列和强大的协调方法,通过整合来开发、校准和验证 MELCAM
BC、PC 和 CRC 多种族幸存者中 LC 的发展、筛查、检查、治疗和生存
(目标 1)。然后,我们将使用该模型来模拟评估有效性的随机对照试验(就最大化
生存率、生活质量和其他以患者为中心的结果)和 LC 筛查方案的 CE(资格、
频率和持续时间)在这些癌症幸存者中(目标 2-4)。该研究将在应用现状方面具有创新性
用于评估不同癌症幸存者群体的 LC 筛查的最先进的建模方法及其结果
将对大量幸存者的管理产生直接影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical and sociodemographic risk factors associated with the development of second primary cancers among postmenopausal breast cancer survivors.
与绝经后乳腺癌幸存者中第二原发癌症发生相关的临床和社会人口学危险因素。
- DOI:
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Bailey, Stacyann;Ezratty, Charlotte;Mhango, Grace;Lin, Jenny J
- 通讯作者:Lin, Jenny J
A Cross-Sectional Analysis of the Lung Cancer Screening Eligibility Among Cancer Survivors Who Ever Smoked.
曾经吸烟的癌症幸存者中肺癌筛查资格的横断面分析。
- DOI:
- 发表时间:2024-02-06
- 期刊:
- 影响因子:5.7
- 作者:Wang, Qian;Hsu, Melinda L;Lin, Jenny J;Wisnivesky, Juan;Cullen, Jennifer;Dowlati, Afshin;Kong, Chung Yin
- 通讯作者:Kong, Chung Yin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung Yin Kong其他文献
Chung Yin Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chung Yin Kong', 18)}}的其他基金
Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
- 批准号:
10608446 - 财政年份:2023
- 资助金额:
$ 67.2万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10317717 - 财政年份:2021
- 资助金额:
$ 67.2万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10317359 - 财政年份:2021
- 资助金额:
$ 67.2万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10450181 - 财政年份:2021
- 资助金额:
$ 67.2万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10451668 - 财政年份:2021
- 资助金额:
$ 67.2万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10668248 - 财政年份:2021
- 资助金额:
$ 67.2万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8548101 - 财政年份:2010
- 资助金额:
$ 67.2万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8799653 - 财政年份:2010
- 资助金额:
$ 67.2万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8115790 - 财政年份:2009
- 资助金额:
$ 67.2万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8115790 - 财政年份:2009
- 资助金额:
$ 67.2万 - 项目类别:
相似国自然基金
冻融循环介导葡萄糖苷酶与热解碳界面分子机制和生化活性研究
- 批准号:42307391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型细菌色氨酸羟化酶家族的酶学表征、生化机理与应用研究
- 批准号:32370051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
原位电离在线衍生化和串联质谱高效鉴定糖类同分异构体的分析策略研发
- 批准号:22374079
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向生化物质检测的太赫兹手性光谱与传感技术研究
- 批准号:62335012
- 批准年份:2023
- 资助金额:240 万元
- 项目类别:重点项目
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
- 批准号:82373758
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Blockade of cMYC oncogenic function by pregnancy-induced alterations and remodeling of the mammary gland
通过妊娠引起的乳腺改变和重塑来阻断 cMYC 致癌功能
- 批准号:
10734182 - 财政年份:2023
- 资助金额:
$ 67.2万 - 项目类别:
Elucidating novel epigenetic modifications implicated in multiple myeloma risk disparities
阐明与多发性骨髓瘤风险差异相关的新型表观遗传修饰
- 批准号:
10912191 - 财政年份:2023
- 资助金额:
$ 67.2万 - 项目类别:
Engineered hybrid aging model for disease progression
用于疾病进展的工程混合衰老模型
- 批准号:
10608767 - 财政年份:2023
- 资助金额:
$ 67.2万 - 项目类别:
Identifying Cancer Recurrence with Novel Data Linkages with a Cancer Registry
通过与癌症登记处的新数据关联来识别癌症复发
- 批准号:
10673736 - 财政年份:2022
- 资助金额:
$ 67.2万 - 项目类别: