Dissecting the mechanisms by which chromosomal instability impacts anti-Disialoganglioside responses in neuroblastoma
剖析染色体不稳定性影响神经母细胞瘤抗双唾液酸神经节苷脂反应的机制
基本信息
- 批准号:10654574
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:11qAddressAffectAgeAntibodiesBiological MarkersCD44 geneCancer ModelCellsChildChromosomal InstabilityChromosome ArmClinicalDataData SetDiagnosticDiseaseDrynessEffectivenessGenesGenomic InstabilityGenomicsGlycolipidsGoalsImmuneImmunotherapyInstitutionKnowledgeLifeLinkMYCN geneMediatingMissionModelingMolecularNatural Killer CellsNeural CrestNeuroblastomaPatient SelectionPatientsProcessPublic HealthResearchRoleSamplingStatistical ModelsSurfaceSurvival RateSystemTechniquesTestingTissuesToxic effectTrainingantibody-dependent cell cytotoxicitybiomarker identificationcancer therapycell typechromosome losscohortdel(11q)exome sequencingexperiencefetalgenetic signaturehigh riskimmune cell infiltrateimmune checkpointimmunohistochemical markersimmunoregulationimprovedinnovationinsightmouse modelneoplastic cellnew therapeutic targetnovelnovel markerprecursor cellpredicting responsepredictive markerprognostic signatureresponders and non-respondersresponseresponse biomarkerrisk predictionsialogangliosidesside effectsingle cell sequencingsingle-cell RNA sequencingskillsstandard of carestatisticstranscriptome sequencingtranscriptomicstreatment responsetreatment stratificationtumortumor microenvironment
项目摘要
ABSTRACT
Although anti-Disialoganglioside (anti-GD2) therapy has significantly improved the survival rates of children
with High-Risk Neuroblastoma (HR-NBL), its clinical utility is severely limited by its life-threatening side effects
and variable response rates. Despite being standard of care for HR-NBL for over 10 years, there are currently
no existing mechanisms to predict whether a child will respond to anti-GD2 therapy. The long-term goal is to
identify predictive biomarkers for response to anti-GD2 therapy and establish a comprehensive understanding
of the therapeutic response mechanism. Our overall objective is to 1) develop a predictive statistical model
for anti-GD2 response using genomic and transcriptomic biomarkers and 2) experimentally characterize the
mechanism underlying this model. The central hypothesis is that genomic changes drive tumor cell
subpopulations with variable immune infiltration and mixed anti-GD2 responses. The rationale for this project
is that identifying predictive biomarkers for anti-GD2 response in Neuroblastoma will improve patient treatment
stratification and help identify strategies for increasing the effectiveness of anti-GD2 therapy. The central
hypothesis will be tested by pursuing 3 specific aims: 1) Define the role of genomic changes in
Neuroblastoma tumor subpopulations; 2) Characterize the role of tumor subpopulations in immune modulation
and anti-GD2 response; and 3) Generate a predictive multivariate model for anti-GD2 response in
Neuroblastoma. To assist with these aims, an institutional single cell expression dataset will be prepared for 20
Neuroblastoma patients. Diagnostic samples from anti-GD2 responders and non-responders will be
sequenced. Under the first aim, cellular-level genomic changes will be quantified in Neuroblastoma
subpopulations using publicly available and institutional single cell expression data. The second aim has 2
parts. For part one, spatial transcriptomics will be used to analyze 8 patients (4 responders; 4 non-responders)
for well-defined intratumoral tissue states known as sub-tumor microenvironments. For part two, syngeneic
mouse models will be used to assess the immunomodulatory role of the immune checkpoint related gene
CD44 in Neuroblastoma. Finally, the third aim will develop a multivariate model comprising genomic,
transcriptomic, and IHC-based features for anti-GD2 response prediction in HR-NBL. The model will be
applicable to bulk sequencing cohorts and validated in two external cohorts. The research proposed in this
application is innovative because it identifies novel genomic/transcriptomic biomarkers for anti-GD2 response
in Neuroblastoma and seeks to characterize a novel mechanism that explains response. The proposed
research is significant because it is expected to improve patient selection for anti-GD2 therapy and provide
much needed insight into mechanisms underlying anti-GD2 response in Neuroblastoma. Ultimately, such
knowledge has the potential to improve survival rates and uncover novel adjunct treatments.
抽象的
尽管抗二唾液酸神经节苷脂(抗GD2)治疗显着提高了儿童的生存率
对于高风险神经母细胞瘤 (HR-NBL),其危及生命的副作用严重限制了其临床应用
和可变的响应率。尽管 10 多年来一直是 HR-NBL 的护理标准,但目前
目前还没有机制可以预测儿童是否会对抗 GD2 治疗产生反应。长期目标是
确定抗 GD2 治疗反应的预测生物标志物并建立全面的了解
的治疗反应机制。我们的总体目标是 1) 开发预测统计模型
使用基因组和转录组生物标志物进行抗 GD2 反应,2) 通过实验表征
该模型的机制。中心假设是基因组变化驱动肿瘤细胞
具有可变免疫浸润和混合抗 GD2 反应的亚群。该项目的理由
确定神经母细胞瘤抗 GD2 反应的预测生物标志物将改善患者治疗
分层并帮助确定提高抗 GD2 治疗有效性的策略。中央
假设将通过追求 3 个具体目标来检验:1)定义基因组变化在
神经母细胞瘤肿瘤亚群; 2) 表征肿瘤亚群在免疫调节中的作用
和抗GD2反应; 3) 生成抗 GD2 反应的预测多变量模型
成神经细胞瘤。为了帮助实现这些目标,将准备一个机构单细胞表达数据集,用于 20
神经母细胞瘤患者。来自抗 GD2 应答者和非应答者的诊断样本将被
已测序。第一个目标是量化神经母细胞瘤中细胞水平的基因组变化
使用公开可用的和机构单细胞表达数据的亚群。第二个目标有2
部分。第一部分将使用空间转录组学分析 8 名患者(4 名有反应者;4 名无反应者)
用于定义明确的肿瘤内组织状态,称为肿瘤下微环境。对于第二部分,同基因
小鼠模型将用于评估免疫检查点相关基因的免疫调节作用
神经母细胞瘤中的 CD44。最后,第三个目标将开发一个包含基因组的多变量模型,
HR-NBL 中抗 GD2 反应预测的转录组和基于 IHC 的特征。该模型将是
适用于批量测序队列并在两个外部队列中进行了验证。本文提出的研究
该应用具有创新性,因为它识别了抗 GD2 反应的新型基因组/转录组生物标志物
在神经母细胞瘤中,并试图描述一种解释反应的新机制。拟议的
研究意义重大,因为它有望改善抗 GD2 治疗的患者选择并提供
神经母细胞瘤中抗 GD2 反应的机制亟需深入了解。最终,这样的
知识有可能提高生存率并发现新的辅助治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Rebernick其他文献
Ryan Rebernick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Rebernick', 18)}}的其他基金
Dissecting the mechanisms by which chromosomal instability impacts anti-Disialoganglioside responses in neuroblastoma
剖析染色体不稳定性影响神经母细胞瘤抗双唾液酸神经节苷脂反应的机制
- 批准号:
10535522 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Dissecting the mechanisms by which chromosomal instability impacts anti-Disialoganglioside responses in neuroblastoma
剖析染色体不稳定性影响神经母细胞瘤抗双唾液酸神经节苷脂反应的机制
- 批准号:
10535522 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Islet Dysregulation in Infants with Congenital Hyperinsulinism
先天性高胰岛素血症婴儿的胰岛失调
- 批准号:
8764054 - 财政年份:2014
- 资助金额:
$ 5.27万 - 项目类别: