Using Machine Learning to Improve the Predictive Accuracy of Disease Cure
使用机器学习提高疾病治疗的预测准确性
基本信息
- 批准号:10654253
- 负责人:
- 金额:$ 45.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvant TherapyAlgorithmsAreaBiologicalCessation of lifeCharacteristicsClassificationClinicalClinical TrialsComplexComputer softwareDataData SetDiagnosisDiseaseDisease ProgressionEventGoalsHealth ProfessionalIncidenceInfectionMachine LearningMethodsModelingModernizationMotivationNatureNeoplasm MetastasisPatientsPatternProbabilityProceduresROC CurveRecurrenceResearchStatistical ModelsStructureTestingTherapeuticTrainingValidationVariantcostexpectationexperiencefeature selectionflexibilityhazardhigh dimensionalityhigh riskimprovedlearning algorithmmachine learning predictionmodel buildingmultidimensional datanext generationnovelnovel strategiesoptimal treatmentspatient populationprecision medicinepredictive modelingscreeningsupport vector machinesurvival predictiontreatment strategy
项目摘要
Abstract
With recent advancements in screening, diagnosis and treatment, many diseases are identified at an early stage and
a significant proportion of patients suffering from these diseases are clinically cured. That is, these patients will never
experience recurrence, metastasis or death due to the primary disease. Among patients with early-stage diseases,
it is clinically important to identify cured patients early, based on their pre-treatment characteristics, so that these
patients can be protected from the additional risks of high-intensity treatments. Similarly, identifying uncured patients
early is also important so that they can be treated timely before their diseases progress to advanced stages for which
therapeutic options are rather limited. Such identification is also crucial for clinical trials to develop effective adjuvant
therapies. Thus, there is an immense need for a predictive model that can take patient survival data and any available
information on patient-related characteristics (or features) as simple inputs and predict the cured or uncured status of
patients with high accuracy. Existing state-of-the-art models capable of such prediction come with several drawbacks
that make them hard to meet the increasing needs for advanced applications. These include the lack of biological
motivation and restrictive model assumptions, non-robustness and global convergence problems with the associated
estimation procedures, inability to efficiently handle high-dimensional data which leads to impreciseness in predictive
accuracies of cure/uncure, and unavailability of the models and the associated methods as ready-to-use software
packages with most of them requiring rich programming experience for successful implementation. The proposed
research seeks to address the aforementioned issues by developing a next generation model, based on decreased
complexity and lower computational cost, for highly accurate prediction of cured or uncured status in the presence of
high-dimensional data. The novel idea here is to integrate machine learning with modern predictive statistical model
to capture complex patterns in the data. We hypothesize that capturing such complex patterns will greatly improve
the predictive accuracy of cure and will also result in improved prediction of the survival distribution of the uncured
patients. In particular, the following specific aims are proposed. Aim 1: To develop a novel support vector machine-
based predictive model that can capture the patient population as a mixture of cured and uncured patients; Aim 2: To
develop new computationally efficient estimation and feature selection methods that can handle high-dimensional data;
Aim 3: To develop new method for validating the proposed model using existing patient survival data and develop R
software package for free and non-profit use. Successful completion of this research will aid in treatment assignment
and the need to develop effective adjuvant therapies for the overall benefit of patients.
抽象的
随着筛查、诊断和治疗的最新进展,许多疾病可以在早期发现并进行治疗。
相当一部分患有这些疾病的患者在临床上得到治愈,也就是说,这些患者永远无法治愈。
因原发病复发、转移或死亡的患者。
在临床上,根据治疗前的特征及早识别治愈的患者非常重要,以便这些患者能够
可以保护患者免受高强度治疗的额外风险。同样,可以识别未治愈的患者
早期也很重要,以便在疾病进展到晚期之前及时治疗。
治疗选择相当有限,这种鉴定对于开发有效佐剂的临床试验也至关重要。
因此,非常需要一种能够获取患者生存数据和任何可用数据的预测模型。
有关患者相关特征(或特征)的信息作为简单输入并预测治愈或未治愈状态
能够进行此类预测的现有最先进模型存在一些失败。
这使得它们难以满足对先进应用日益增长的需求,其中包括缺乏生物技术。
动机和限制性模型假设、非鲁棒性和相关的全局收敛问题
估计程序,无法有效处理高维数据,导致预测不精确
治愈/未治愈的准确性,以及模型和相关方法作为即用型软件的可用性
其中大多数软件包需要丰富的编程经验才能成功实施。
研究旨在通过开发下一代模型来解决上述问题,该模型基于减少的
复杂性和较低的计算成本,可在存在固化或未固化状态的情况下高度准确地预测
这里的新颖想法是将机器学习与现代预测统计模型相结合。
捕获数据中的复杂模式我们利用捕获这种复杂模式将大大提高。
治愈的预测准确性,也将改善对未治愈者生存分布的预测
特别是,提出了以下具体目标:开发一种新型支持向量机。
基于预测模型,可以将患者群体捕获为已治愈和未治愈患者的混合体;目标 2:
开发新的计算有效的估计和特征选择方法,可以处理高维数据;
目标 3:开发新方法,使用现有患者生存数据验证所提出的模型并开发 R
免费和非营利性使用的软件包。成功完成这项研究将有助于治疗分配。
以及为了患者的整体利益而开发有效的辅助疗法的需要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUVRA PAL其他文献
SUVRA PAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUVRA PAL', 18)}}的其他基金
Data-driven QSP software for personalized colon cancer treatment
用于个性化结肠癌治疗的数据驱动 QSP 软件
- 批准号:
10227447 - 财政年份:2019
- 资助金额:
$ 45.21万 - 项目类别:
相似国自然基金
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
构建多组学数据融合模型预测结直肠癌新辅助免疫治疗疗效的研究
- 批准号:82373431
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于二元重编程的归一化肿瘤疫苗在局部晚期三阴乳腺癌新辅助治疗中的作用与机制研究
- 批准号:32371451
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
食管癌新辅助治疗中靶向化疗耐药改善免疫治疗抵抗的机制发现和功能解析
- 批准号:82320108016
- 批准年份:2023
- 资助金额:210 万元
- 项目类别:国际(地区)合作与交流项目
机器学习辅助按需设计多酶活性纳米酶用于糖尿病足溃疡治疗研究
- 批准号:32371465
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 45.21万 - 项目类别:
Defining therapeutic strategies for boosting T-cell infiltration into cold tumors with spatial proteomics and machine learning
利用空间蛋白质组学和机器学习确定促进 T 细胞浸润冷肿瘤的治疗策略
- 批准号:
10743501 - 财政年份:2023
- 资助金额:
$ 45.21万 - 项目类别:
Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
- 批准号:
10708575 - 财政年份:2023
- 资助金额:
$ 45.21万 - 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 45.21万 - 项目类别:
Quantitative assessment of pre-metastatic immune subversion as a risk factor for melanoma relapse
转移前免疫颠覆作为黑色素瘤复发危险因素的定量评估
- 批准号:
10310757 - 财政年份:2022
- 资助金额:
$ 45.21万 - 项目类别: