Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
基本信息
- 批准号:7759402
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcousticsAcuteAdverse effectsAlgorithmsBiologicalBlood capillariesBody SurfaceCalculiCell NucleusChronicClinicalClinical DataCodeDataDevicesDiabetes MellitusElasticityElectromagneticsEnsureFamily suidaeFire - disastersFractureFrequenciesFundingGasesGoalsGrowthHematomaHypertensionImaging problemIn VitroIndividualInjuryInjury to KidneyIslet CellIslets of LangerhansKidneyKidney CalculiLawsLifeLinkLiquid substanceLiteratureLithotripsyLocationLungMeasurementMeasuresMechanicsMediatingMembraneMethodsModelingMotionMovementOutcomeOutputPancreasProcessProgram Research Project GrantsPropertyRelaxationResistanceRespirationRiskRoleShockSignal TransductionSimulateSourceStagingStressTestingTimeTissue ModelTissuesTransducersTubeUltrasonographyVertebral columnViscosityWaterattenuationbasecapillaryimprovedin vivoinsightmathematical modelmodels and simulationnew technologyphysical propertypressureresearch studyresponsesimulationtechnology developmenttissue phantomtoolvaporvasoconstrictionvirtual
项目摘要
Shock wave lithotripsy (SWL) revolutionized the treatment of kidney stones when it was introduced in the
1980s. However, the subsequent development of the technology has shown little improvement in clinical
outcomes, such as stone free rate. Further there have been studies indicating an association with chronic
complications in particular new onset hypertension and diabetes mellitus. Progress within the current
funding period has identified strategies by which shock waves can be delivered with reduced acute tissue
damage. The goal of Project 4 is to investigate the fundamental mechanisms of tissue damage, both to the
kidney, where the PPG has confirmed its extent and identified possible chronic implication, and in the
pancreas. In Aim 1 we will extend a current numerical simulation tool to predict the acoustic insult of a
lithotripter to the kidney and pancreas. This tool will be used extensively to provide input data for other
aims. In Aim 2, will evaluate a hypothesis developed by this group that the direct effect of repeated shocks
on the tissue might initiate injury. Preliminary results from a mathematical model predict that this damage
will be more important in the inner medulla where injury is first observed experimentally. In Aim 3 we will use
our advanced modeling and simulation tools to understand the mediating factors in cavitation induced injury.
Experimental evidence of cavitation in tissue is unambiguous, but the mechanisms by which it damages
tissue and the reasons why it appears suppressed during the first few hundred shock waves are unclear.
Aim 4 will apply the tools developed in the previous 3 aims to assess the acoustic insult and subsequent
tissue injury to the pancreas in order to gain insight into the risk of lithotripsy inducing diabetes. Aim 5 is
motivated by data from the PPG that indicates that a broad focal zone lithotripter can suppress injury and at
the same time improve stone fragmentation. The goal will be to understand the physical properties of the
acoustic field which result in reduced tissue damage but with effective fragmentation. Aim 6 exploits data
that shows many shock waves do not hit the stone but they will still impact tissue. We plan to develop a
device that can track stone location and gate current lithotripters to ensure that shock waves are only fired
when the stone is on target. By reducing the number of off-target shock waves the insult to the tissue will be
reduced. The overarching goal of Project 4 is to provide a strategy for shock wave lithotripsy to be delivered
with fewer side effects by a combination of understanding the fundamental mechanics of the tissue damage
process and developing novel technologies which will reduce the shock wave impact.
冲击波岩石疗法(SWL)在肾结石中引入时彻底改变了肾结石的处理。
1980年代。但是,该技术的随后发展显示临床几乎没有改善
结果,例如无石费率。此外,有研究表明与慢性
并发症特别是新发作高血压和糖尿病。电流的进展
资金期已经确定了可以通过减少急性组织传递冲击波的策略
损害。项目4的目的是研究组织损伤的基本机制
肾脏,PPG已确认其程度并确定了可能的慢性含义,在
胰腺。在AIM 1中,我们将扩展一个当前的数值模拟工具,以预测
岩石和胰腺的岩石磨牙。该工具将广泛使用以提供其他
目标。在AIM 2中,将评估该组提出的假设,即重复冲击的直接影响
在组织上可能会引发受伤。数学模型的初步结果预测了这种损害
在首先通过实验观察到损伤的内部延髓将更为重要。在AIM 3中,我们将使用
我们的高级建模和模拟工具,以了解空化诱导损伤中的中介因子。
在组织中空气的实验证据是明确的,但是它损坏的机制
组织及其在前几百个冲击波中似乎被抑制的原因尚不清楚。
AIM 4将应用上3个旨在评估声学侮辱和随后的工具中开发的工具
胰腺的组织损伤,以深入了解岩性疗法诱导糖尿病的风险。目标5是
由来自PPG的数据激励,表明宽阔的焦点区域岩石膜可以抑制伤害,并在
同时改善石材碎片。目标是了解
声场导致组织损伤减少但有效碎裂。 AIM 6利用数据
这表明许多冲击波不会撞到石头,但仍会影响组织。我们计划开发一个
可以跟踪石头位置和门流电流岩石磨牙器以确保仅发射冲击波的设备
当石头在目标上时。通过减少脱靶冲击波的数量,对组织的侮辱将是
减少。项目4的总体目标是为要交付的冲击波碎石术提供策略
通过了解组织损伤的基本力学的结合,副作用较少
处理和开发新型技术,这将减少冲击波影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Cleveland其他文献
Robin Cleveland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Cleveland', 18)}}的其他基金
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8291363 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8484828 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8120862 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8378229 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Continuous Photoacoustic Monitoring of Neonatal Stroke in Intensive Care Unit
重症监护病房新生儿中风的连续光声监测
- 批准号:
10548689 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Effects of Auditory Neuropathy and Cochlear Hearing Loss on Speech Perception
听觉神经病变和耳蜗听力损失对言语感知的影响
- 批准号:
10458872 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Effects of Auditory Neuropathy and Cochlear Hearing Loss on Speech Perception
听觉神经病变和耳蜗听力损失对言语感知的影响
- 批准号:
10577419 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Using nicotine to reverse age-related auditory processing deficits
使用尼古丁逆转与年龄相关的听觉处理缺陷
- 批准号:
10543546 - 财政年份:2021
- 资助金额:
$ 23.25万 - 项目类别:
Using nicotine to reverse age-related auditory processing deficits
使用尼古丁逆转与年龄相关的听觉处理缺陷
- 批准号:
10320043 - 财政年份:2021
- 资助金额:
$ 23.25万 - 项目类别: