Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
基本信息
- 批准号:7759402
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcousticsAcuteAdverse effectsAlgorithmsBiologicalBlood capillariesBody SurfaceCalculiCell NucleusChronicClinicalClinical DataCodeDataDevicesDiabetes MellitusElasticityElectromagneticsEnsureFamily suidaeFire - disastersFractureFrequenciesFundingGasesGoalsGrowthHematomaHypertensionImaging problemIn VitroIndividualInjuryInjury to KidneyIslet CellIslets of LangerhansKidneyKidney CalculiLawsLifeLinkLiquid substanceLiteratureLithotripsyLocationLungMeasurementMeasuresMechanicsMediatingMembraneMethodsModelingMotionMovementOutcomeOutputPancreasProcessProgram Research Project GrantsPropertyRelaxationResistanceRespirationRiskRoleShockSignal TransductionSimulateSourceStagingStressTestingTimeTissue ModelTissuesTransducersTubeUltrasonographyVertebral columnViscosityWaterattenuationbasecapillaryimprovedin vivoinsightmathematical modelmodels and simulationnew technologyphysical propertypressureresearch studyresponsesimulationtechnology developmenttissue phantomtoolvaporvasoconstrictionvirtual
项目摘要
Shock wave lithotripsy (SWL) revolutionized the treatment of kidney stones when it was introduced in the
1980s. However, the subsequent development of the technology has shown little improvement in clinical
outcomes, such as stone free rate. Further there have been studies indicating an association with chronic
complications in particular new onset hypertension and diabetes mellitus. Progress within the current
funding period has identified strategies by which shock waves can be delivered with reduced acute tissue
damage. The goal of Project 4 is to investigate the fundamental mechanisms of tissue damage, both to the
kidney, where the PPG has confirmed its extent and identified possible chronic implication, and in the
pancreas. In Aim 1 we will extend a current numerical simulation tool to predict the acoustic insult of a
lithotripter to the kidney and pancreas. This tool will be used extensively to provide input data for other
aims. In Aim 2, will evaluate a hypothesis developed by this group that the direct effect of repeated shocks
on the tissue might initiate injury. Preliminary results from a mathematical model predict that this damage
will be more important in the inner medulla where injury is first observed experimentally. In Aim 3 we will use
our advanced modeling and simulation tools to understand the mediating factors in cavitation induced injury.
Experimental evidence of cavitation in tissue is unambiguous, but the mechanisms by which it damages
tissue and the reasons why it appears suppressed during the first few hundred shock waves are unclear.
Aim 4 will apply the tools developed in the previous 3 aims to assess the acoustic insult and subsequent
tissue injury to the pancreas in order to gain insight into the risk of lithotripsy inducing diabetes. Aim 5 is
motivated by data from the PPG that indicates that a broad focal zone lithotripter can suppress injury and at
the same time improve stone fragmentation. The goal will be to understand the physical properties of the
acoustic field which result in reduced tissue damage but with effective fragmentation. Aim 6 exploits data
that shows many shock waves do not hit the stone but they will still impact tissue. We plan to develop a
device that can track stone location and gate current lithotripters to ensure that shock waves are only fired
when the stone is on target. By reducing the number of off-target shock waves the insult to the tissue will be
reduced. The overarching goal of Project 4 is to provide a strategy for shock wave lithotripsy to be delivered
with fewer side effects by a combination of understanding the fundamental mechanics of the tissue damage
process and developing novel technologies which will reduce the shock wave impact.
冲击波碎石术 (SWL) 被引入美国后,彻底改变了肾结石的治疗方法。
20 世纪 80 年代。但该技术的后续发展在临床上却没有什么改善。
结果,例如结石清除率。此外,还有研究表明与慢性
并发症,特别是新发高血压和糖尿病。目前的进展
资助期间已确定了可以通过减少急性组织来传递冲击波的策略
损害。项目 4 的目标是研究组织损伤的基本机制,无论是对
肾,PPG 已确认其范围并确定了可能的慢性影响,并且在
胰腺。在目标 1 中,我们将扩展当前的数值模拟工具来预测
肾脏和胰腺碎石机。该工具将广泛用于为其他工具提供输入数据
目标。在目标 2 中,将评估该小组提出的假设,即重复冲击的直接影响
组织上可能会引发损伤。数学模型的初步结果预测这种损害
在首先通过实验观察到损伤的内部髓质中更为重要。在目标 3 中我们将使用
我们先进的建模和模拟工具可了解空化引起的损伤的中介因素。
组织中空化现象的实验证据是明确的,但其损害的机制
组织及其在最初几百个冲击波中受到抑制的原因尚不清楚。
目标 4 将应用前 3 个目标中开发的工具来评估声损伤和后续目标
胰腺组织损伤,以深入了解碎石术诱发糖尿病的风险。目标 5 是
受到 PPG 数据的启发,该数据表明宽焦区碎石机可以抑制损伤,并且
同时提高石材破碎度。目标是了解物理特性
声场可减少组织损伤,但可有效破碎。目标 6 利用数据
这表明许多冲击波不会击中石头,但仍会冲击组织。我们计划开发一个
可以跟踪结石位置和控制电流碎石机以确保仅发射冲击波的装置
当石头击中目标时。通过减少脱靶冲击波的数量,对组织的损伤将减少
减少。项目 4 的总体目标是提供一种实施冲击波碎石术的策略
通过结合了解组织损伤的基本机制,可以减少副作用
过程和开发新技术,以减少冲击波的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Cleveland其他文献
Robin Cleveland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Cleveland', 18)}}的其他基金
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8291363 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8484828 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8120862 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8378229 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Continuous Photoacoustic Monitoring of Neonatal Stroke in Intensive Care Unit
重症监护病房新生儿中风的连续光声监测
- 批准号:
10548689 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Effects of Auditory Neuropathy and Cochlear Hearing Loss on Speech Perception
听觉神经病变和耳蜗听力损失对言语感知的影响
- 批准号:
10458872 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Effects of Auditory Neuropathy and Cochlear Hearing Loss on Speech Perception
听觉神经病变和耳蜗听力损失对言语感知的影响
- 批准号:
10577419 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Using nicotine to reverse age-related auditory processing deficits
使用尼古丁逆转与年龄相关的听觉处理缺陷
- 批准号:
10543546 - 财政年份:2021
- 资助金额:
$ 23.25万 - 项目类别:
Using nicotine to reverse age-related auditory processing deficits
使用尼古丁逆转与年龄相关的听觉处理缺陷
- 批准号:
10320043 - 财政年份:2021
- 资助金额:
$ 23.25万 - 项目类别: