Modulation of heart function by Muscle LIM protein-mediated mechanotransduction
肌肉 LIM 蛋白介导的机械转导调节心脏功能
基本信息
- 批准号:10645223
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3 year oldActinsActomyosinAffectAffinityAutophagocytosisBiomechanicsBiopsyBioreactorsCalcineurinCalcineurin inhibitorCalciumCalpainCardiacCardiac MyocytesCardiac MyosinsComplexComputer ModelsCoupledDevelopmentDiastoleDisinhibitionEventExtracellular MatrixFamilial Hypertrophic CardiomyopathyFiberFibroblastsFoundationsFutureGenerationsGenesGeneticHeart DiseasesHeart HypertrophyHeart failureHeterozygoteHumanHyperactivityHypertrophic CardiomyopathyHypertrophyImpairmentIndividualInheritedInterventionInvestigationLasersLeftLeft Ventricular HypertrophyLengthLysosomesMechanicsMediatingMicrofilamentsMolecularMuscleMuscle ContractionMutationMyocardial dysfunctionMyocardiumMyosin ATPaseMyosin Heavy ChainsNonsense CodonNuclearObstructionPPP3CA geneParentsPathologicPathway interactionsPatientsPeptide HydrolasesPersonsPhenotypePhysiologicalPoint MutationProductionProtein IsoformsProteinsRelaxationRepressionRodentRoleSarcomeresSignal TransductionSkinSomatic CellStem Cell FactorStressStretchingSystemSystoleT-Cell ActivationTestingTissuesUbiquitinVentricularbeta-Myosincardiac tissue engineeringdesigndisease phenotypeheart functionhuman diseaseimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinnovationinsightmalemechanical propertiesmechanical stimulusmechanotransductionmouse modelmulticatalytic endopeptidase complexmuscle LIM proteinmutantnovelnovel strategiesnovel therapeuticsnuclear factors of activated T-cellspharmacologicpreventprobandprotein degradationrecruitresponsescaffoldsudden cardiac deathtransmission process
项目摘要
Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused
by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include
left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. The mechanotransduction
mechanism by which dysregulated sarcomeric force production is sensed and leads to pathological remodeling
remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. Our discovery
was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a
sarcomeric mechano-sensing protein. We effectively derived cardiomyocytes from patient-specific induced
pluripotent stem cells (iPSC-CMs) and developed robust engineered heart tissues (EHTs) by seeding iPSC-CMs into
a laser-cut scaffold possessing native cardiac fiber alignment, for studying human cardiac mechanobiology at both
cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease
phenotype via gene editing and pharmacological interventions, we have identified a new mechanotransduction
pathway in HCM. Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin
heavy chain (MYH7) led to increased force generation, which when coupled with slower twitch relaxation,
destabilized the muscle LIM protein (MLP) stretch-sensing complex at the Z-disc. Subsequent reduction in the
sarcomeric MLP level caused disinhibition of calcineurin–nuclear factor of activated T-cells (NFAT) signaling,
which promoted cardiac hypertrophy. By mitigating enhanced actomyosin crossbridge formation through either
genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy
associated with sarcomeric mutations. This proposal will dissect the roles of systolic and diastolic Z-disc stress
in modulating the MLP mechanosensory complex and elucidate the molecular mechanisms that mediate the
repression of calcineurin/NFAT by MLP as well as MLP protein degradation by stretch-sensing. We have recently
developed a new bioreactor that can expose EHTs to precisely prescribed afterloads, so we can test the
hypothesis that higher systolic forces produced by crossbridges under higher afterloads destabilize MLP at the
Z-disc and activate hypertrophic signaling during systole. Additionally, EHTs will be subjected to culture under
conditions of either constant length or diastolic stretch to mimic ventricular filling. After repeated stretching, EHTs
will be examined for hypertrophic signaling. We will unravel mechanistic insights into how saromeric MLP is
degraded in response to Z-disc stress. In addition, we will dissect molecular mechanisms by which MLP inhibits
calcineurin/NFAT hypertrophic responses in systole and diastole. Elucidation of the molecular mechanisms of a
common sarcomeric contraction/MLP/calcineurin mechanotransduction pathway will help to design novel
strategies for a wide spectrum of heart failure patients potentially through stabilizing the Z-disk MLP mechanosensory
complex.
家族性肥厚型心肌病 (HCM) 是最常见的遗传性心脏病,通常由以下原因引起:
由编码调节心肌收缩力的肌节蛋白的基因突变引起的,包括:
左心室肥厚和心力衰竭、心律失常和心源性猝死。
感知肌节力产生失调并导致病理重塑的机制
对 HCM 的了解仍知之甚少,从而阻碍了新疗法的有效开发。
是基于对患有 HCM 的个体的严重表型和第二个基因改变的见解
我们有效地从患者特异性诱导的心肌细胞中获得。
多能干细胞 (iPSC-CM) 并通过将 iPSC-CM 接种到体内,开发出强大的工程心脏组织 (EHT)
具有天然心脏纤维排列的激光切割支架,用于研究人类心脏力学生物学
结合细胞和组织水平的肌肉收缩和疾病救援的计算模型。
通过基因编辑和药理学干预,我们发现了一种新的机械转导
HCM 中心肌肌球蛋白肌节突变引起的肌动球蛋白横桥形成增强。
重链(MYH7)导致力量产生增加,当与较慢的抽搐放松相结合时,
使 Z 盘处的肌肉 LIM 蛋白 (MLP) 拉伸感应复合物不稳定。
肌节 MLP 水平导致钙调神经磷酸酶 - 激活 T 细胞核因子 (NFAT) 信号传导去抑制,
通过减轻增强的肌动球蛋白横桥形成来促进心脏肥大。
通过遗传或药理学手段,我们减轻了 Z 盘的压力,防止肥大的发展
该提案将剖析收缩期和舒张期 Z 盘应力的作用。
调节 MLP 机械感觉复合体并阐明介导该复合体的分子机制
我们最近通过 MLP 抑制钙调神经磷酸酶/NFAT 以及通过拉伸感应降解 MLP 蛋白。
开发了一种新的生物反应器,可以将 EHT 暴露于精确规定的后负荷中,因此我们可以测试
假设在较高的后负荷下,横桥产生的较高的收缩力会破坏 MLP 的稳定性
此外,EHT 将在收缩期进行培养。
恒定长度或舒张期拉伸的条件以模拟心室充盈。
我们将检查 saromeric MLP 的肥大信号传导机制。
此外,我们将剖析 MLP 抑制的分子机制。
钙调神经磷酸酶/NFAT 在收缩期和舒张期的肥大反应的分子机制的阐明。
共同的肌节收缩/MLP/钙调神经磷酸酶机械转导途径将有助于设计新颖的
通过稳定 Z 盘 MLP 机械感觉,可能为广泛的心力衰竭患者提供策略
复杂的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yibing Qyang其他文献
Yibing Qyang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yibing Qyang', 18)}}的其他基金
Modulation of heart function by Muscle LIM protein-mediated mechanotransduction
肌肉 LIM 蛋白介导的机械转导调节心脏功能
- 批准号:
10503955 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10298018 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10457467 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10685550 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10298018 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10414459 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10630420 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10439796 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10189694 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10841794 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
相似国自然基金
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Rac1 and the actin cytoskeleton in renal tubular repair
Rac1 和肌动蛋白细胞骨架在肾小管修复中的作用
- 批准号:
10739610 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Chemoattractant-specific T cell navigation of complex environments
复杂环境中化学引诱剂特异性 T 细胞导航
- 批准号:
10741224 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别: