Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
基本信息
- 批准号:10652078
- 负责人:
- 金额:$ 46.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2026-06-14
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAdultAffectiveAftercareAlgorithmsAnorexia NervosaBehavior DisordersBehavior assessmentBehavioralBinge EatingBulimiaChronicCircadian DysregulationCircadian RhythmsCognitiveDataData CollectionDiagnosisDiagnosticDimensionsDisease remissionEating DisordersEcological momentary assessmentEventEvidence based treatmentFeelingFrightFundingFutureGlobal Positioning SystemGoalsHealth PersonnelHeart RateHyperphagiaIndividualLeadMachine LearningMaintenanceMeasuresMethodsModelingOutcomeParticipantPatient Self-ReportPatientsPersonsPhysiologicalPhysiologyPrecision Medicine InitiativeProceduresPublishingRecoveryRelapseReportingResearchSample SizeSamplingSeveritiesSignal TransductionSleepSleep Wake CycleSleep disturbancesSymptomsSystemTechniquesTestingThinkingThinnessTimeUnited States National Institutes of HealthWeight GainWorkdietingeffective therapyfeature detectionfollow up assessmentfollow-upheart rate variabilityimprovedinnovationmobile computingnovelnovel therapeuticspersonalized medicineprediction algorithmpredictive modelingpreventpublic health relevancepurgerecruitrelapse preventionresponsesensorsensor technologysevere mental illnessstandard caretreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Eating disorders (EDs) are severe mental illnesses. Efficacy rates of evidence-based treatments
are low (<50% response) and relapse rates are high (>35% relapse after treatment). The low
treatment response and high relapse rates are due, in part, to the fact that EDs are heterogeneous
conditions. As such, idiographic (i.e., one person) models are needed that can predict and
ultimately prevent, onset of both problematic ED behaviors (e.g., purging, binge eating) and
remission/relapse. The current renewal application capitalizes on our existing data collection
(N=120 ED) to both increase our sample size (N=140) and extend data collection to two years of
follow-up. Our study goals are to: (1) characterize and predict shorter-and-longer-term relapse
and remission (2) use real-time physiological data algorithms to predict onset of ED behaviors,
relapse, and remission. We will use a multiple units of analysis approach combined with novel,
cutting-edge advances in idiographic modeling. In our currently funded proposal, we collected
intensive real-time data using mobile and sensor-technology from 120 individuals with a diagnosis
of anorexia nervosa (AN), atypical AN, and bulimia nervosa across 30 days and assessed follow-
up at 1-month and 6-months. In this renewal we will collect additional follow-ups at 18-month and
2-years and include behavioral assessments of body disturbances and behavioral avoidance. We
will also collect a new subsample of participants (n=20) and include additional assessment of
global positioning system (GPS), the sleep-wake cycle, and circadian rhythm disruption (CR).
These additional assessments will improve characterization of relapse, capture a greater
percentage of relapse events (~35% across two years), improve accuracy of prediction for ED
behaviors, relapse, and remission, and identify which features (e.g., GPS, sleep-wake cycle)
contribute to improved accuracy. Specific aims are to: (1) well-characterize longer-term (18 month
and 2 years) relapse/remission in the existing sample of EDs, (2) test if both idiographic EMA and
physiological (HR/HRV, EDA, ACC) features predict longer-term relapse/remission and (3)
determine if the addition of GPS and sleep-wake ACC & CR data improve accuracy of our
predictive algorithms. The proposed research uses highly innovative methods, combining
intensive longitudinal data collection methods, all remote procedures, novel advances in
idiographic modeling and sensor-technology, and state-of-the-art machine learning techniques.
These data will lead directly to novel therapeutics such as just-in-time mobile and sensor alert
systems that can provide guidance to both clinicians and patients on how to prevent problematic
ED behaviors and ultimately increase remission and decrease relapse rates.
项目概要/摘要
饮食失调(ED)是严重的精神疾病。循证治疗的有效率
疗效低(<50%),复发率高(治疗后复发>35%)。低
治疗反应和高复发率部分是由于 ED 具有异质性
状况。因此,需要具体的(即一个人)模型来预测和
最终预防有问题的 ED 行为(例如,排泄、暴饮暴食)的发生,以及
缓解/复发。当前的续订应用程序利用了我们现有的数据收集
(N=120 ED) 既增加了样本量 (N=140),又将数据收集延长至两年
后续行动。我们的研究目标是:(1) 描述和预测短期和长期复发
和缓解 (2) 使用实时生理数据算法来预测 ED 行为的发生,
复发、缓解。我们将使用多单元分析方法与新颖的、
具体建模方面的前沿进展。在我们目前资助的提案中,我们收集了
使用移动和传感器技术收集来自 120 名诊断患者的密集实时数据
神经性厌食症 (AN)、非典型 AN 和神经性贪食症的 30 天,并进行随访评估
1个月和6个月上涨。在本次更新中,我们将在 18 个月和
2 年,包括对身体障碍和行为回避的行为评估。我们
还将收集新的参与者子样本(n = 20)并包括对
全球定位系统 (GPS)、睡眠-觉醒周期和昼夜节律紊乱 (CR)。
这些额外的评估将改善复发的特征,捕获更大的
复发事件的百分比(两年内约 35%),提高 ED 预测的准确性
行为、复发和缓解,并确定哪些特征(例如 GPS、睡眠-觉醒周期)
有助于提高准确性。具体目标是:(1) 充分描述长期(18 个月)
和 2 年)现有 ED 样本中的复发/缓解,(2)测试具体的 EMA 和
生理(HR/HRV、EDA、ACC)特征可预测长期复发/缓解以及 (3)
确定添加 GPS 和睡眠唤醒 ACC 和 CR 数据是否可以提高我们的准确性
预测算法。拟议的研究采用高度创新的方法,结合
密集的纵向数据收集方法、所有远程程序、新进展
具体建模和传感器技术,以及最先进的机器学习技术。
这些数据将直接导致新的治疗方法,例如即时移动和传感器警报
可以为临床医生和患者提供有关如何预防问题的指导的系统
ED 行为并最终提高缓解率并降低复发率。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentiation between atypical anorexia nervosa and anorexia nervosa using machine learning.
使用机器学习区分非典型神经性厌食症和神经性厌食症。
- DOI:
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Sandoval;Cusack, Claire E;Ralph;Glatt, Sofie;Han, Yuchen;Bryan, Jeffrey;Hooper, Madison A;Karem, Andrew;Levinson, Cheri A
- 通讯作者:Levinson, Cheri A
Comparisons between atypical anorexia nervosa and anorexia nervosa: Psychological and comorbidity patterns.
非典型神经性厌食症和神经性厌食症之间的比较:心理和合并症模式。
- DOI:
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Fitterman;Han, Yuchen;Osborn, Kimberly D;Faulkner, Loie M;Williams, Brenna M;Pennesi, Jamie;Levinson, Cheri A
- 通讯作者:Levinson, Cheri A
Are central eating disorder network symptoms sensitive to item selection and sample? Implications for conceptualization of eating disorder psychopathology from a network perspective.
中枢性饮食失调网络症状对项目选择和样本敏感吗?
- DOI:
- 发表时间:2024-01
- 期刊:
- 影响因子:0
- 作者:Cusack, Claire E;Vanzhula, Irina A;Sandoval;Pennesi, Jamie;Kelley, Sean W;Levinson, Cheri A
- 通讯作者:Levinson, Cheri A
Not niche: eating disorders as an example in the dangers of overspecialisation.
不是利基市场:饮食失调是过度专业化危险的一个例子。
- DOI:
- 发表时间:2024-03
- 期刊:
- 影响因子:0
- 作者:Haynos, Ann F;Egbert, Amy H;Fitzsimmons;Levinson, Cheri A;Schleider, Jessica L
- 通讯作者:Schleider, Jessica L
Momentary physiological indices related to eating disorders: A systematic and methodological review.
与饮食失调相关的瞬时生理指标:系统和方法学回顾。
- DOI:
- 发表时间:2024-03-06
- 期刊:
- 影响因子:0
- 作者:Ralph;Osborn, Kimberly D;Chang, Rose Seoyoung;Barber, Kathryn E
- 通讯作者:Barber, Kathryn E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheri Alicia Levinson其他文献
Cheri Alicia Levinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheri Alicia Levinson', 18)}}的其他基金
Innovations in Personalizing Treatment for Eating Disorders Using Idiographic Methods and the Impact of Personalization on Psychological, Physical, and Sociodemographic Outcomes
使用具体方法对饮食失调进行个性化治疗的创新以及个性化对心理、身体和社会人口学结果的影响
- 批准号:
10685796 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
- 批准号:
10731597 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
- 批准号:
10611448 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10612256 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
- 批准号:
10425019 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10542414 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10732131 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
- 批准号:
10579874 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10347759 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
- 批准号:
10372099 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unraveling the mechanisms of a novel music intervention for physical activity promotion in older adults
揭示新型音乐干预促进老年人身体活动的机制
- 批准号:
10766983 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Characterizing Acute Exercise Response in Restrictive Eating Disorders
限制性饮食失调的急性运动反应特征
- 批准号:
10739107 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Establishing Efficacy for the Congenital Heart Disease Physical Activity Lifestyle Intervention
确定先天性心脏病体力活动生活方式干预的功效
- 批准号:
10709643 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Establishing Efficacy for the Congenital Heart Disease Physical Activity Lifestyle Intervention
确定先天性心脏病体力活动生活方式干预的功效
- 批准号:
10586778 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Optimizing Music-Based Interventions for Stroke Rehabilitation
优化基于音乐的中风康复干预措施
- 批准号:
10607156 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别: