Functional consequences of evolutionary innovation in histone repertoires
组蛋白库进化创新的功能后果
基本信息
- 批准号:10644921
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectBiologicalBiological AssayBiological ProcessBiologyBirthCell physiologyCellsChromatinDNADNA DamageDNA PackagingDNA RepairDNA Repair GeneDefectDevelopmentDiseaseDrosophila genomeDrosophila genusEngineeringEukaryotaEventEvolutionFertilityFoundationsFrequenciesFutureGene DuplicationGene ExpressionGene Expression RegulationGene FusionGenesGeneticGenetic TranscriptionGenomeGenomicsGrowthHeterochromatinHistone FoldHistone H2AHistonesLearningLengthLinkLocationMalignant NeoplasmsMediatingMeiosisMitosisMolecular EvolutionMutateMutationN-terminalOrganismPartner in relationshipPhenotypePhylogenetic AnalysisPlayProcessProtein FamilyProteinsRecording of previous eventsRecurrenceRegulationResearchRoleSaccharomyces cerevisiaeSaccharomycetalesSpecificityTailTestingTrainingVariantWorkYeastsfitnessflexibilityflyfungusgene repressiongenomic locusimprovedin vivoinnovationinsightmodel organismmutantnovelpressurepreventprogramsresponseskillstool
项目摘要
PROJECT SUMMARY
Histone proteins package DNA into chromatin and regulate all DNA-templated biological processes in
eukaryotes. Consistent with their essential function, mutations or misregulation of histones result in many
diseases. While core histones primarily function in genome packaging, histone variants can replace canonical
histones at unique genomic locations for specialized roles such as DNA damage response (DDR) or gene
expression. Despite their essential functions, histone repertoires have undergone distinct lineage-specific
changes. Such evolutionary novelty via gene fusions, duplications or sequence divergence is unexpected in
conserved protein families and suggestive of an adaptive advantage for sequence innovation. This proposal
will use evolutionary innovations in eukaryotic histone H2A repertoires to investigate the causes and
consequences of evolutionary turnover of histone proteins. The most common eukaryotic H2A repertoire is
made up of core histone H2A, and histone variants H2A.X and H2A.Z that are involved in DDR and gene
regulation, respectively. However, two evolutionary shifts, both likely selectively advantageous, have occurred
in yeast and Drosophila H2A repertoires. In yeast, H2A.X, entirely replaced canonical H2A, likely improving
DDR and affecting processes like meiosis that depend on DDR. In Drosophila, H2A.X fused with H2A.Z giving
rise to a unique H2Av variant. This fusion enriches DDR at heterochromatin which potentially restricts DDR-
based transposition events to gene poor regions. To identify functional consequences of these evolutionary
innovations, the applicant will re-engineer the ancestral eukaryotic H2A repertoire in yeast and flies.
Specifically in S. cerevisiae, the applicant will engineer a core H2A and two variants H2A.X and H2A.Z,
preventing H2A.X from being the core histone (Aim 1). In D. melanogaster, the fusion histone H2Av will be
separated into H2A.X and H2A.Z uncoupling DDR and gene regulation functions (Aim 2). Changes to
organismal chromatin packaging, and relevant biological functions including DNA repair, meiosis, fertility, and
transposition will be interrogated. In Aim 3, the applicant will apply tools learnt in Aims 1 and 2 to study
divergence of eukaryotic core H2A. Histones have tail sequences which are heavily post-translationally
modified and play crucial roles for higher order chromatin packaging and protein interactions. The high
sequence divergence across eukaryotic histone tails suggests that tails could facilitate unique lineage-specific
functions. By engineering different tail sequences in yeast and flies, Aim 3 will reveal changes to chromatin
packaging, and changes to processes such as mating, and quiescence in yeast, and fertility and development
in flies. To launch this work, the applicant requires training in genetics, genomics, and phenotypic assays in
two model organisms, yeast and flies. By leveraging, her expertise in evolutionary analyses and the power of
well-established tools in yeast and flies simultaneously, in the future the applicant will study the biological basis
and consequences of histone innovation including her own previous discoveries and co-evolving mechanisms.
项目概要
组蛋白将 DNA 包装到染色质中并调节所有以 DNA 为模板的生物过程
真核生物。与其基本功能一致,组蛋白的突变或失调会导致许多
疾病。虽然核心组蛋白主要在基因组包装中发挥作用,但组蛋白变体可以取代经典组蛋白
组蛋白位于独特的基因组位置,具有特殊作用,例如 DNA 损伤反应 (DDR) 或基因
表达。尽管具有基本功能,但组蛋白库已经经历了明显的谱系特异性
变化。这种通过基因融合、重复或序列分歧而产生的进化新颖性在人类中是出乎意料的。
保守的蛋白质家族并暗示序列创新的适应性优势。这个提议
将利用真核组蛋白 H2A 库的进化创新来研究其原因和
组蛋白进化更新的后果。最常见的真核 H2A 库是
由核心组蛋白 H2A 以及参与 DDR 和基因的组蛋白变体 H2A.X 和 H2A.Z 组成
分别进行监管。然而,已经发生了两种进化转变,两者都可能具有选择性优势
在酵母和果蝇 H2A 库中。在酵母中,H2A.X 完全取代了典型的 H2A,可能会改善
DDR 并影响依赖于 DDR 的减数分裂等过程。在果蝇中,H2A.X 与 H2A.Z 融合
产生独特的 H2Av 变体。这种融合丰富了异染色质处的 DDR,这可能限制 DDR-
基于基因贫乏区域的转座事件。识别这些进化的功能后果
创新,申请人将重新设计酵母和果蝇中的祖先真核 H2A 库。
具体而言,在酿酒酵母中,申请人将设计一个核心 H2A 和两个变体 H2A.X 和 H2A.Z,
阻止 H2A.X 成为核心组蛋白(目标 1)。在黑腹果蝇中,融合组蛋白 H2Av 将是
分为 H2A.X 和 H2A.Z,解偶联 DDR 和基因调控功能(目标 2)。更改为
有机体染色质包装以及相关的生物学功能,包括 DNA 修复、减数分裂、生育力和
换位将受到询问。在目标 3 中,申请人将应用在目标 1 和 2 中学到的工具来学习
真核核心H2A的分歧。组蛋白具有大量翻译后的尾部序列
修饰并在高级染色质包装和蛋白质相互作用中发挥关键作用。高
真核组蛋白尾部的序列差异表明尾部可以促进独特的谱系特异性
功能。通过在酵母和果蝇中设计不同的尾部序列,Aim 3 将揭示染色质的变化
包装,以及酵母交配和静止等过程的变化,以及生育和发育
在苍蝇中。为了开展这项工作,申请人需要接受遗传学、基因组学和表型分析方面的培训
两种模式生物:酵母和果蝇。通过利用她在进化分析方面的专业知识和力量
同时在酵母和果蝇中建立完善的工具,未来申请人将研究其生物学基础
以及组蛋白创新的后果,包括她自己之前的发现和共同进化机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pravrutha Raman其他文献
Pravrutha Raman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于新型微凝胶/金纳米粒复合生物压力探针的肿瘤压力检测和影响因素研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
用于快速检测的纸基材料对生物医学比色反应信号的影响机制
- 批准号:82072016
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
土壤胞外DNA的分离、检测及其对土壤微生物群落结构研究的影响
- 批准号:31971530
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
利用微波技术快速诊断金属污染物对微生物群落的影响
- 批准号:41603069
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
采用三维碳气凝胶微电极电化学生物传感器实时检测电刺激多巴胺能神经元对多巴胺分泌的影响
- 批准号:21505108
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别: