PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
基本信息
- 批准号:10605316
- 负责人:
- 金额:$ 60.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAffectAffinityAgeAgingAldehyde-LyasesAmericanAnimal ModelAnimalsAnionsAsparagineAspartateBackBindingBinding SitesBiochemicalBiochemical PathwayBiologyBloodBlood BanksBlood TransfusionBlood donorCell AgingCell SeparationCell SurvivalCell membraneCell physiologyCellsCellular biologyChargeChemicalsChildhoodChloridesDataDehydrationDiseaseDissectionDockingEnergy MetabolismEnzymesErythrocyte TransfusionErythrocytesEstersExposure toFailureFlow CytometryFunctional disorderGlucoseGlucosephosphate Dehydrogenase DeficiencyGlyceraldehyde-3-Phosphate DehydrogenasesGlycolysisGoalsHealthHemoglobinHomeostasisHospitalsHumanHuman bodyIn VitroIndividualInpatientsKnockout MiceLongevityLungMediatingMedicalMembrane ProteinsMetabolicMetabolic PathwayMetabolic stressMetabolismMethodologyMethylationMethyltransferaseModelingMolecularMusN-terminalNADPNew YorkOrganismOxidantsOxidation-ReductionOxidative StressOxygenPathologicPathologyPathway interactionsPentosephosphate PathwayPeripheralPersonsPhysiologicalPlayPopulationProceduresProtein BiosynthesisProtein MethylationProteinsProteomicsReactionRecyclingRegulationRoleSickle CellSiteSuccinimidesSystemTestingTimeTissuesToxicologyTransfusionTranslationsVertebral columnage relatedcell agecell typecofactordeamidationdesigngene productin vivometabolomicsmouse modelmutantnovelnovel strategiesnovel therapeuticsoxidant stressoxidationoxidative damagerepairedsenescencesensorstressortool
项目摘要
ABSTRACT
A variety of specific chemical damage occurs as a result of normal cellular senescence, as well as accelerated
damage in the context of certain pathologies. One such chemical pathway is the degradation of aspartates into
isoaspartyl residues through oxidant damage. As a repair mechanisms, PIMT1 is an enzymatic pathway that
methylates isoaspartyl residues, creating an isoaspartyl methyl ester that is capable of then spontaneously
reverting into aspartate, thus reversing isoaspartyl damage. Insufficient PIMT1 activity has been associated with
increased oxidant stress and shorter cellular and organism lifespan in mice; however, a detailed metabolic and
biochemical analysis of the role of PIMT1 has not been elucidated. In this application, we propose to study the
role of PIMT1 in cellular aging. While multiple tissues will be analyzed to test general effects of PIMT1, this
proposal mainly focusses on a specific central hypothesis regarding effects in red blood cells (RBCs). RBCs are
essential to health, and dysfunction of RBCs plays a central role in multiple diseases. In addition, transfusion of
RBCs is the single most common inpatient invasive therapy, being given to approximately 1 out of every 70
Americans, annually. RBCs that are transfused are stored (as a logistical necessity) for up to 42 days, during
which time they undergo specific cellular and biochemical damage. RBCs are known to lose an essential
regulatory function through a key gene product (AE1) in normal cellular aging and in RBC storage. However, the
molecular mechanism by which AE1 dysfunction occurs has been unknown. In this application we provide novel
data demonstrating that isoaspartyl damage occurs in AE1 of both human and murine RBCs in a domain of AE1
that requires aspartates to function. We likewise present data suggesting that failure of PIMT1 pathways
accelerates this damage – however whole animal modeling with deletion of PIMT1 is required to test a
mechanistic role. In this context, we offer the following specific aims, designed to critically test hypotheses
around the role of PIMT1 mediated repair of oxidant damage. Specific Aim 1: Mechanistic elucidation of the
role of protein methylation by PIMT1 in the function and senescence of RBCs. Specific Aim 2: the interaction
of increased oxidant stress on PIMT1 and its effects on RBCs aging in vivo and ex vivo (blood storage). PIMT1
null mice will be combined with additional strains designed to isolate metabolic pathways of functional relevance
(e.g. G6PD deficient). Advanced experimental methodologies will be applied to these animals in order to isolate
cells of particular age and physiological conditions. Finally, the controlled biologies generated from these
approaches will be analyzed by cutting edge metabolomic and proteomic methodologies. In aggregate, these
studies will advance our understanding of the role of specific pathways of biochemical cellular aging, of the
mechanistic role of a conserved repair pathway (PIMT1), and in the context of advanced biochemical analysis
and modeling to generate novel mechanistic understanding and critical testing of focused hypotheses.
抽象的
由于细胞衰老正常而导致的各种特定的化学损伤发生,并延期
在某些病理上的损害。
通过氧化剂损伤以及pimt1是一种酶促途径,
甲基化的异源居民居民,产生了同甲酯甲基酯,该甲酯能够自发地自发
恢复天冬氨酸,从而逆转同甲基损伤。
氧化剂应激增加,小鼠的细胞和生物寿命较短)
对PIMT1的作用的生化分析尚未在此应用中阐明。
PIMT1在细胞衰老中的作用。
提案主要关注有关红细胞(RBC)影响的特定中心假设。
对健康至关重要,RBC的功能障碍在多种疾病中起着核心作用。
RBCS是最常见的内科入侵疗法,约有1个以上的70
美国人,每年被输血的RBC(作为后勤上的必要性)长达42天
众所周知,在哪个时间经历特定的细胞和生化损害。
在正常细胞衰老和RBC存储中,调节功能在正常细胞衰老中的关键基因产物(AE1)。
AE1功能障碍的分子机制在此应用中未知。
数据表明,在AE1的域中,在人类和鼠RBC的AE1 AE1中发生异源损伤。
这需要Aspartath的功能。
加速了这种损害 - 但是,需要使用PIMT1缺失的整个动物建模才能测试
机械作用。在这种情况下,我们提供以下特定目标
围绕PIMT1介导的氧化剂损伤修复的作用。
PIMT1蛋白甲基化在RBC的功能和衰老中的作用。
对PIMT1的氧化应激及其对RBC在体内衰老的影响(血液存储)
NULL小鼠将与旨在隔离功能相关的代谢途径的育种菌株结合
(例如,G6PD缺乏)。
特定年龄和生理条件的细胞。
方法将通过尖端代谢组和蛋白质组学方法进行分析
研究将建议或理解生化细胞衰老特定途径的核心,
保守修复途径(PIMT1)的机械作用,并在先进的生化分析的背景下
并建模以产生新的机械理解和对集中假设的批判性测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angelo D'Alessandro其他文献
Angelo D'Alessandro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angelo D'Alessandro', 18)}}的其他基金
Investigating metabolic responses to high sugar diets and the onset of diabetic phenotypes
研究对高糖饮食的代谢反应和糖尿病表型的发生
- 批准号:
10719544 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Interactions between the ADORA2b/Sphk1axis and the AE1-Hb switch in red blood cell aging in vivo and in vitro
ADORA2b/Sphk1axis 和 AE1-Hb 开关在体内和体外红细胞老化中的相互作用
- 批准号:
10580716 - 财政年份:2020
- 资助金额:
$ 60.58万 - 项目类别:
Interactions between the ADORA2b/Sphk1axis and the AE1-Hb switch in red blood cell aging in vivo and in vitro
ADORA2b/Sphk1axis 和 AE1-Hb 开关在体内和体外红细胞老化中的相互作用
- 批准号:
10369002 - 财政年份:2020
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10252033 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10487440 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
- 批准号:
10405591 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
PIMT1 in Red Blood Cell aging in vivo and in vitro
PIMT1在体内和体外红细胞老化中的作用
- 批准号:
9983156 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
The Impact of Oxidative Stress on Erythocyte Biology
氧化应激对红细胞生物学的影响
- 批准号:
10022515 - 财政年份:2019
- 资助金额:
$ 60.58万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Innovative therapeutic strategies to support elimination of river blindness
支持消除河盲症的创新治疗策略
- 批准号:
10754120 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Estradiol signaling pathways mediating sex differences in striatal synaptic plasticity
雌二醇信号通路介导纹状体突触可塑性的性别差异
- 批准号:
10607187 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别: