Fully Automated High-Throughput Quantitative MRI of the Liver
肝脏全自动高通量定量 MRI
基本信息
- 批准号:10605255
- 负责人:
- 金额:$ 62.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-08 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAffectAmericanAnatomyAnemiaArtificial IntelligenceBiological MarkersBiopsyBlood TransfusionBreathingChemical EngineeringChemicalsChildCirrhosisClinicalCost AnalysisDataDevelopmentDiagnostic testsDiffuseEngineeringEnsureFDA approvedFatty LiverFatty acid glycerol estersGoalsHealthHepaticHepatocyteHereditary hemochromatosisImageImage AnalysisInterventionIronIron OverloadLengthLiverLiver FailureLiver diseasesMRI ScansMagnetic Resonance ImagingManualsMapsMeasurementMethodsModelingMonitorMorphologic artifactsMotionNIH Program AnnouncementsNational Institute of Biomedical Imaging and BioengineeringNon-Invasive DetectionPatientsPersonsPopulations at RiskPreventionPreventive treatmentPrimary carcinoma of the liver cellsProtocols documentationProtonsQuantitative EvaluationsReportingReproducibilityResearch PersonnelScanningScheduleSensitivity and SpecificitySeriesSourceStagingSurveysTestingTimeTrainingTransfusionTranslationsTriglyceridesValidationVendorWorkautomated analysischronic liver diseaseclinical examinationclinical implementationclinical translationcomorbiditycostdensitydesigndiagnostic valuefatty liver diseaseimprovedinnovationnon-alcoholic fatty liver diseasenonalcoholic steatohepatitisnovelquantitative imagingrespiratorytool
项目摘要
PROJECT SUMMARY:
The overall goal of this application is to develop, implement and test a “single button push”, integrated
combination of innovative MRI solutions to enable widespread and generalizable implementation of quantitative
evaluation of chronic liver disease in < 5 minutes. We aim to design a reliable, efficient, low variability, and fully
automated, MRI exam. This goal will be enabled by artificial intelligence (AI), reengineered chemical shift
encoded (CSE)-MRI to provide “error-free” free-breathing measurement of liver fat and iron, an innovative MRI
suite design, and automated analysis. In this way, we aim to achieve high-throughput, low-cost evaluation
of liver disease with high accuracy, precision and reproducibility. Abnormal accumulation of triglycerides in
hepatocytes, or steatosis, is the earliest feature of non-alcoholic fatty liver disease (NAFLD), affecting ~100
million people in the US. Liver iron overload is common in patients with hereditary hemochromatosis and those
receiving repeated blood transfusions. Early, affordable, and accessible non-invasive detection and quantitative
staging of liver fat and iron would impact the health of millions of people at risk for NAFLD and its comorbidities,
as well as those with liver iron overload. Confounder-corrected CSE-MRI provides simultaneous estimation of
liver proton density fat fraction (PDFF) and R2*, which are accurate, precise and reproducible biomarkers of liver
fat and iron. A primary determinant of the cost of MRI is scheduled MRI suite time. Minimum slot times to
accommodate the majority of patients are driven by variability in exam duration and MRI suite turnaround time.
As MRI scan times are shortened, the largest contributor to exam duration is the time needed for i) manual image
prescription, ii) repeated scans (rework), and iii) room turnaround time. Many patients, including children, are
unable to hold their breath for the duration of CSE-MRI (~20 seconds) leading to ghosting artifacts that corrupt
PDFF / R2* maps, necessitating repeated CSE-MRI acquisitions and exacerbating exam time variability. We will
address these challenges by developing fully automated AI-based image prescription based on multi-center,
multi-vendor data at 1.5T and 3T, in parallel with a novel “error-proof” high SNR “snapshot” CSE-MRI method
that is insensitive to breathing motion. This will be performed using a novel MR “Smart Suite” design, capable
of patient turnaround in less than 2 minutes, followed by automated quantitative analysis and reporting. We
will implement and test a fully automated, single button push CSE-MRI exam by aiming to: 1). Develop and
optimize motion insensitive, high SNR, free-breathing CSE-MRI for accurate and precise measurement of PDFF
and R2*, 2). Confirm the accuracy, repeatability, and reproducibility of the proposed CSE-MRI method in patients
with liver fat and iron overload, and 3). Implement and validate a fully automated CSE-MRI protocol in less than
5 minutes of MR room time. If successful, this work will provide a high-throughput, high value solution for liver
fat/iron quantification. The innovations proposed in this application will also have broad applicability beyond
CSE-MRI, and ultimately reduce cost and increase access, through improvements in MRI scanner utilization.
项目摘要:
该应用程序的总体目标是开发,实施和测试“单个按钮推”,集成
创新MRI解决方案的组合,以实现定量的宽度和可推广的实施
评估慢性肝病在<5分钟内。我们旨在设计可靠,高效,较低的可变性,并且完全
自动化,MRI考试。该目标将由人工智能(AI)启用,重新设计的化学移位
编码(CSE)-MRI提供“无错误”的肝脂肪和铁的自由呼吸测量,这是一种创新的MRI
套件设计和自动分析。这样,我们旨在实现高通量,低成本评估
具有高精度,精度和可重复性的肝病。甘油三酸酯中异常加速
肝细胞或脂肪变性是非酒精性脂肪肝病(NAFLD)的最早特征,影响〜100
美国百万人。肝铁超负荷在遗传性血色素症患者中很常见,
接受反复输血。早期,负担得起且可访问的非侵入性检测和定量
肝脏脂肪和铁的分期会影响数百万有NAFLD风险及其合并症的人的健康,
以及那些肝铁超负荷的人。混杂校正的CSE-MRI提供了简单的估计
肝质子密度脂肪分数(PDFF)和R2*,它们是肝脏的准确,精确和可重复的生物标志物
脂肪和铁。预定MRI套件时间的主要确定器。最小插槽时间
住宿大多数患者是由考试持续时间和MRI套件周转时间变异性驱动的。
随着MRI扫描时间缩短,考试持续时间的最大贡献是i)手动图像的时间
处方,ii)重复扫描(返工)和iii)房间周转时间。许多患者,包括儿童,是
在CSE-MRI(〜20秒)的持续时间内无法屏住呼吸
PDF / R2*地图,必要的重复CSE-MRI采集并加剧考试时间的可变性。我们将
通过开发基于多中心的完全自动化AI的图像处方来应对这些挑战
在1.5T和3T处的多供应商数据与新颖的“防误”高SNR“快照” CSE-MRI方法并行
那对呼吸运动不敏感。这将使用小说MR“ Smart Suite”设计进行,能够
不到2分钟的患者周转时间,然后进行自动定量分析和报告。我们
将通过:1)来实现并测试全自动的单个按钮推CSE-MRI考试。发展和
优化运动不敏感的高SNR,自由呼吸CSE-MRI,以准确而精确的PDF测量
和R2*,2)。确认患者提出的CSE-MRI方法的准确性,可重复性和繁殖
肝脏脂肪和铁超负荷,以及3)。在少于
5分钟的房间时间。如果成功,这项工作将为肝脏提供高通量,高价值解决方案
脂肪/铁数量。本申请中提出的创新也将具有广泛的适用性
CSE-MRI,最终通过改善MRI扫描仪利用率来降低成本并提高访问范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diego Hernando其他文献
Diego Hernando的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diego Hernando', 18)}}的其他基金
Fully Automated High-Throughput Quantitative MRI of the Liver
肝脏全自动高通量定量 MRI
- 批准号:
10445467 - 财政年份:2022
- 资助金额:
$ 62.75万 - 项目类别:
MRI-based Quantitative Susceptibility Mapping of Hepatic Iron Overload
基于 MRI 的肝铁过载定量磁化率图
- 批准号:
9902421 - 财政年份:2018
- 资助金额:
$ 62.75万 - 项目类别:
MRI-based Quantitative Susceptibility Mapping of Hepatic Iron Overload
基于 MRI 的肝铁过载定量磁化率图
- 批准号:
9500652 - 财政年份:2018
- 资助金额:
$ 62.75万 - 项目类别:
MRI-based Quantitative Susceptibility Mapping of Hepatic Iron Overload
基于 MRI 的肝铁过载定量磁化率图
- 批准号:
10201584 - 财政年份:2018
- 资助金额:
$ 62.75万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Preclinical validation of Kir4.1/5.1 inhibitors for overcoming diuretic resistance
Kir4.1/5.1 抑制剂克服利尿剂抵抗的临床前验证
- 批准号:
10740429 - 财政年份:2023
- 资助金额:
$ 62.75万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 62.75万 - 项目类别:
Human-centered CT-based CADx Tools for Traumatic Torso Hemorrhage
以人为中心、基于 CT 的 CADx 工具,用于治疗躯干外伤出血
- 批准号:
10566836 - 财政年份:2023
- 资助金额:
$ 62.75万 - 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 62.75万 - 项目类别: