Leveraging COVID-19 to modernize depression care for VA primary care populations

利用 COVID-19 实现 VA 初级保健人群的抑郁症护理现代化

基本信息

项目摘要

Background: As part of comprehensive suicide prevention, VA integrated mental and physical health services to better detect and treat depression. Primary care nurses conduct screening annually. Clinicians, including Primary Care Mental Health Integration (PC-MHI) specialists, follow up as-needed for treatment. Depression detection and management processes are complex, involve multilevel stakeholders, and subject to significant disruption from COVID-19 and from resulting expansion of telehealth aiming to preserve care access. Fewer VA visits during the pandemic may signify lowered depression care quality and worsened patient outcomes. Significance: Depression affects 1 in 5 Veterans and is a leading cause of suicidality and disability. It contributes substantially to the current pandemic-related mental health crisis. Depression symptoms, including suicidal thoughts/behaviors, and related functional impairment have increased since COVID onset. Partnering with Primary Care, Mental Health, and Connected Care leaders, we propose to study pandemic-related service disruptions for depression, which may help to mitigate acute care use and mortality in the Veteran population. We apply established depression quality indicators from our prior research to a broad national scale at a critical time. We will also obtain feedback to improve current hybrid (virtual/in-person) care models from VA providers and Veterans who screened positive, including those who were not detected to have depression. Specific Aims: To improve virtual and in-person services for the VA primary care population during recovery, this proposal will examine how the pandemic disrupted depression care delivery mechanisms, including expanded telehealth, and patient outcomes. Our Specific Aims are: 1) To examine engagement in guideline- concordant care for depression (virtual or in-person) following screening, before and during the pandemic; 2) To compare psychiatric emergency/hospital visits and mortality from suicide between Veterans who screened positive and were detected versus not detected to have depression by clinicians; 3) To understand VA patients’ and providers’ current perspectives on addressing new depressive episodes using virtual and in-person modalities during the pandemic and eventual recovery. Methodology: Given hypothesized care disruption (lowered care quality) during COVID-19, Aim 1 proposes to extend our preliminary VISN methods nationally to assess the VA population’s trajectory from a new positive depression (and suicide-risk) screen to appropriate treatment (i.e., medication, therapy) in FY19-22/23. We will also examine the changing mix of virtual and in-person depression care delivered. Aim 2 will use interrupted time series analyses to explore the extent to which acute care use may be mitigated by clinician detection of depression nationally. We will also compare mortality rates between patients detected and not detected to have depression. Sub-analyses will reveal where (e.g., clinics with low PC-MHI access) and for whom (e.g., minorities) detection does not systematically occur, and downstream negative sequelae, to guide future intervention. Finally, Aim 3 will interview (1) 40 Veterans who were detected and not detected to have depression per Aims 1 & 2 about care-seeking behavior change, digital divide, etc. and (2) 40 VA primary care and PC-MHI providers about staffing shortage, telehealth adoption, etc. across three VAs (GLA, Syracuse, and Durham). In addition to contextualizing disrupted care findings, qualitative data will help isolate best practices on patient-to-provider and provider-to-provider (e.g., handoffs) interactions in hybrid depression care models. Next Steps/Implementation: The COVID-19 pandemic provides the VA with an opportunity to improve upon a system-wide proactive response to depression and suicide, one that is conceptualized to care for the entire Veteran population. This proposed research will provide the basis for testable hypotheses (e.g., acceptable virtual depression treatments in primary care), and clinical recommendations (e.g., satisfactory virtual provider- to-provider handoffs for new patient referrals), to improve virtual and in-person VA depression services.
背景:作为全面自杀预防的一部分,退伍军人管理局整合了心理和身体健康服务 为了更好地发现和治疗抑郁症,初级保健护士每年都会进行筛查。 初级保健心理健康整合 (PC-MHI) 专家根据抑郁症的需要进行后续治疗。 检测和管理流程很复杂,涉及多级利益相关者,并且受到重大影响 COVID-19 造成的干扰以及由此产生的旨在减少医疗服务的远程医疗的扩展。 大流行期间退伍军人管理局就诊可能意味着抑郁症护理质量下降和患者预后恶化。 意义:抑郁症影响五分之一的退伍军人,是自杀和残疾的主要原因。 严重加剧了当前与大流行相关的心理健康危机,包括抑郁症状。 自新冠疫情爆发以来,自杀念头/行为以及相关功能障碍有所增加。 我们建议与初级保健、心理健康和互联护理领域的领导者一起研究与流行病相关的服务 抑郁症的干扰,这可能有助于减少退伍军人群体的急性护理使用和死亡率。 我们将先前研究中建立的抑郁症质量指标应用到全国范围内的关键关键时刻 我们还将从 VA 提供者处获取反馈,以改进当前的混合(虚拟/面对面)护理模式。 筛查呈阳性的退伍军人,包括那些未被检测出患有抑郁症的退伍军人。 具体目标: 改善康复期间退伍军人事务部初级保健人群的虚拟和面对面服务, 该提案将研究大流行如何扰乱抑郁症护理提供机制,包括 扩大远程医疗和患者结果是:1)检查指南的参与度。 在筛查后、大流行之前和期间对抑郁症进行协调护理(虚拟或面对面); 比较接受筛查的退伍军人之间的精神科急诊/医院就诊和自杀死亡率 3) 了解 VA 患者的情况 以及提供者当前对使用虚拟和面对面解决新抑郁症发作的看法 大流行期间和最终恢复的方式。 方法:考虑到 COVID-19 期间的阶梯式护理中断(护理质量降低),目标 1 建议 将我们初步的 VISN 方法扩展到全国范围内,以评估 VA 人口从新的积极趋势的轨迹 我们将在 2019 财年至 22/23 财年对抑郁症(和自杀风险)进行筛查以采取适当的治疗(即药物、治疗)。 还研究了目标 2 将使用中断方式提供的虚拟和面对面抑郁症护理组合的变化。 时间序列分析,探讨临床医生检测可在多大程度上减轻急症护理的使用 我们还将比较检测到和未检测到的抑郁症患者的死亡率。 子分析将揭示在哪里(例如,PC-MHI 访问率较低的诊所)以及为谁(例如, 少数)检测没有系统地发生,以及下游负面后遗症,以指导未来 最后,目标 3 将采访 (1) 40 名被发现和未被发现的退伍军人。 根据关于寻求护理行为改变、数字鸿沟等的目标 1 和 2 的抑郁症以及 (2) 40 VA 初级保健 和 PC-MHI 提供商就三个 VA(GLA、雪城大学和 达勒姆)。 关于混合抑郁症护理模型中患者与提供者和提供者与提供者(例如交接)互动的研究。 后续步骤/实施:COVID-19 大流行为 VA 提供了改进的机会 全系统对抑郁症和自杀采取积极主动的应对措施,其概念是为了照顾整个系统 退伍军人群体。这项拟议的研究将为可检验的假设提供基础(例如可接受的假设)。 初级保健中的虚拟抑郁症治疗)和临床建议(例如,令人满意的虚拟提供者- 向新患者转诊的提供者交接),以改善虚拟和面对面的 VA 抑郁症服务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucinda B Leung其他文献

Lucinda B Leung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucinda B Leung', 18)}}的其他基金

Virtual Care Coordination in VA Primary Care-Mental Health Integration
退伍军人事务部初级保健-心理健康一体化中的虚拟护理协调
  • 批准号:
    10639607
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Depression Management in Primary Care
改善初级保健中的抑郁症管理
  • 批准号:
    10689686
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Improving Depression Management in Primary Care
改善初级保健中的抑郁症管理
  • 批准号:
    10186554
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Improving Depression Management in Primary Care
改善初级保健中的抑郁症管理
  • 批准号:
    10460426
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

山丘区农户生计分化对水保措施采用的影响及其调控对策
  • 批准号:
    42377321
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
  • 批准号:
    32301322
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
  • 批准号:
    72271190
  • 批准年份:
    2022
  • 资助金额:
    43 万元
  • 项目类别:
    面上项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
社会网络与新产品采用:二元网络结构驱动的社会影响机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Barriers to early identification of dementia in a safety net healthcare system
安全网医疗保健系统中早期识别痴呆症的障碍
  • 批准号:
    10728164
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Adapting Online Obesity Treatment for Primary Care Patients in Poverty
为贫困初级保健患者采用在线肥胖治疗
  • 批准号:
    10722366
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
  • 批准号:
    10824878
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了