Modular Reagents for Programmable RNA Manipulation by Endogenous Proteins

用于内源蛋白可编程 RNA 操作的模块化试剂

基本信息

  • 批准号:
    10605050
  • 负责人:
  • 金额:
    $ 6.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-27 至 2026-02-26
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY: New strategies to targeted difficult-to-drug diseases such as cancers, neurodegeneration, and genetic disorders are urgently needed. RNA manipulation is an emerging, therapeutically attractive paradigm which allows target intervention orthogonal to drugging proteins and without the permanence of gene editing. A variety of tools for RNA manipulation have been developed, but they rely on ribonuclear proteins, which are difficult to deliver in vivo or are limited in scope of effect. This proposal aims to develop RNA-based bifunctional molecules (RBMs) which will consist of an RNA oligonucleotide liked to a small molecule which recruits an effector protein, and will enable modular, programmable targeting of RNA with a variety of manipulations. The proposed mechanism for RBMs is based on small interfering RNA (siRNA) oligonucleotides which are widely used as research tools and have resulted in multiple approved therapeutics. In cells, siRNAs are loaded into Argonaute (AGO) proteins which are part of the RNA silencing complex (RISC). AGO then guides RISC to mRNA targets complementary to its loaded siRNA guide, which are cleaved upon binding, resulting in translational silencing. The oligonucleotide portion of RBMs will function much like siRNAs but will feature key mismatches with the target RNA. Such mismatches have been shown to oblate the cleavage activity of RISC while maintaining target binding. Target binding will induce proximity between the target RNA and an effector protein recruited by the small molecule ligand of the RBM, allowing the effector to act on the target. I will synthesize a small library of RBMs with variable linker lengths and positions, and verify that they can interact with AGO and a model effector protein in vitro (Aim 1). Next, I will use AGO pulldown to show that these interactions can be recapitulated in cells, then use two model systems to show that RBMs can enable post-transcriptional control of mRNA targets (Aim 2). Finally, I will show that RBMs targeting nuclear, long non-coding RNAs can enable control of gene expression (Aim 3). Overall, this will create a platform in which the siRNA paradigm is expanded to enable a much wider variety of manipulations, which will enable novel research tools and therapies. This project will use my existing skills in synthetic chemistry as a foundation and then allow me to branch out in the field of chemical biology. The laboratory of my sponsor, Prof. Steven Banik, is a supportive research environment which will enable me to successfully learn the new skills required to execute this proposal. Prof. Banik is a member of Stanford's Chemistry Engineering and Medicine for Human Health (ChEM-H), a highly collaborative and interdisciplinary institute. Stanford and ChEM-H will afford me all necessary research resources, a variety of opportunities for professional development, and the opportunity to work with, and learn from many, different scientists.
项目摘要: 针对癌症,癌症,神经变性和遗传疾病等难以药物疾病的新策略 迫切需要。 RNA操纵是一种新兴的治疗范围,允许目标 干预与吸毒蛋白的正交,没有基因编辑的持续性。多种工具 已经开发了RNA操作,但它们依赖于核糖核蛋白,这些蛋白很难递送 体内或效果范围有限。该建议旨在开发基于RNA的双功能分子(RBMS) 它将由喜欢募集效应蛋白的小分子的RNA寡核苷酸组成,并将 启用具有多种操作的RNA的模块化,可编程的靶向。提出的机制 RBMS基于小型干扰RNA(siRNA)寡核苷酸,该寡核苷酸被广泛用作研究工具和 导致多种批准的治疗学。在细胞中,siRNA被加载到Argonaute(AGO)蛋白中 这是RNA沉默复合物(RISC)的一部分。以前,然后将RISC引导到mRNA目标互补 到其加载的siRNA指南,在结合后裂解,从而导致平移沉默。这 RBMS的寡核苷酸部分的功能与siRNA一样起作用,但将以与目标的关键不匹配 RNA。此类不匹配已被证明可以弥补RISC的裂解活动,同时保持目标 结合。目标结合将诱导靶RNA和效应子蛋白之间的接近性 RBM的小分子配体,允许效应子对靶标作用。我将综合一个小库 具有可变链接器长度和位置的RBM,并验证它们可以与AGO交互和模型效应器 体外蛋白质(AIM 1)。接下来,我将使用AGO PULLDONN来证明这些相互作用可以在 细胞,然后使用两个模型系统表明RBM可以实现对mRNA目标的转录后控制 (目标2)。最后,我将证明针对核,长的非编码RNA的RBM可以控制基因 表达(目标3)。总体而言,这将创建一个平台,其中siRNA范式扩展以启用 各种各样的操作将实现新颖的研究工具和疗法。 该项目将使用我现有的合成化学技能作为基础,然后让我分支 在化学生物学领域。我的赞助商史蒂文·班尼克(Steven Banik)教授是一项支持性研究 环境将使我能够成功学习执行该建议所需的新技能。教授 Banik是斯坦福大学的化学工程和人类健康医学(Chem-H)的成员,这是一个高度的 协作和跨学科研究所。斯坦福大学和Chem-H将为我提供所有必要的研究 资源,各种专业发展的机会以及与之合作的机会 来自许多不同的科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identifying and targeting a novel mechanism of chemotherapy-induced immunotherapeutic resistance in non-small cell lung cancer
识别和靶向非小细胞肺癌化疗引起的免疫治疗耐药的新机制
  • 批准号:
    10657188
    10657188
  • 财政年份:
    2023
  • 资助金额:
    $ 6.87万
    $ 6.87万
  • 项目类别:
Ablating Liver Metastases with SBRT to Enhance Immune Checkpoint Blockade in Melanoma
用 SBRT 消融肝转移以增强黑色素瘤的免疫检查点封锁
  • 批准号:
    10562707
    10562707
  • 财政年份:
    2023
  • 资助金额:
    $ 6.87万
    $ 6.87万
  • 项目类别:
The volume-regulated anion channel as a regulator of secretory activity in the intestinal epithelium
容量调节阴离子通道作为肠上皮分泌活性的调节剂
  • 批准号:
    10464156
    10464156
  • 财政年份:
    2022
  • 资助金额:
    $ 6.87万
    $ 6.87万
  • 项目类别:
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
  • 批准号:
    10503919
    10503919
  • 财政年份:
    2022
  • 资助金额:
    $ 6.87万
    $ 6.87万
  • 项目类别:
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
  • 批准号:
    10672366
    10672366
  • 财政年份:
    2022
  • 资助金额:
    $ 6.87万
    $ 6.87万
  • 项目类别: