Brain Drivers, Cognition, and Parkinson's Disease: A Psychometric Approach
大脑驱动因素、认知和帕金森病:心理测量方法
基本信息
- 批准号:10604827
- 负责人:
- 金额:$ 4.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-16 至 2025-05-15
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAffectAgeAge-associated memory impairmentAgingAmyloid beta-ProteinAreaAstrocytesBiological MarkersBrainC-reactive proteinCategoriesCerebrovascular DisordersCluster AnalysisCognitionCognitiveCompetenceDataDementiaDisease ProgressionDoctor of PhilosophyEducationEnvironmentEquationEvaluationExecutive DysfunctionFunctional disorderFutureGenderGoalsGrantHomocysteineIdiopathic Parkinson DiseaseImpaired cognitionIndividualInterleukin-6Linear RegressionsLongitudinal StudiesMagnetic Resonance ImagingMeasuresMemoryMemory LossMentorsMethodologyMethodsModelingMotorMovement DisordersNeurobiologyNeurodegenerative DisordersParkinson DiseaseParticipantPerformancePersonsPhenotypePlasmaPredictive FactorPredictive ValuePriceProductivityProfessional CompetencePsychometricsResearchResearch PersonnelResourcesRiskRisk FactorsSamplingSubgroupSystemTNF geneTrainingUnited StatesUnited States National Institutes of HealthVariantVisitWhite Matter Hyperintensityalpha synucleincareercerebrovascularclinical prognosiscognitive changecognitive performancecohortcytokineexecutive functionexperiencefallsfollow-uphypoperfusionimprovedmotor symptomneuroinflammationneuropathologynon-motor symptompatient prognosisprecision medicineprogramsrisk predictionsexskill acquisitionstroke risktau Proteins
项目摘要
PROJECT SUMMARY/ABSTRACT
Parkinson’s disease (PD) is one of the fastest-growing neurodegenerative disorders in the United States, with
cognitive decline being among its most debilitating non-motor symptoms. With disease progression, most
individuals eventually develop dementia. However, the trajectory of cognitive decline varies between
individuals—leading to a search for risk factors of impending decline. In 2019, Ryan and colleagues proposed a
precision aging model and suggested that typical age-related cognitive decline was influenced by three broad
categories of “brain drivers”: neuropathology (e.g., alpha-synuclein, tau), neuroinflammation (e.g., cytokines),
and cerebrovascular dysfunction (e.g., white matter hyperintensities). Past research has consistently measured
these brain driver factors in isolation, despite these factors all belonging to an interconnected, neurobiological
system. Thus, the goal of the proposed study is to determine whether cognitive variation in PD is better explained
by a combination of these neurobiological risk factors, relative to isolated factors. The central hypothesis is that
each category of brain drivers (i.e., neuropathology, neuroinflammation, cerebrovascular dysfunction) will
uniquely relate to cognitive performance (specifically executive function and memory), such that adding in each
category will better explain changes in each cognitive domain. The proposed study will examine data from an
existing, well-characterized cohort of individuals with idiopathic PD without dementia (N=112) to determine the
association between brain driver factors and cognitive performance cross-sectionally and longitudinally (at a 2-
year follow-up). To do so, brain driver relationships with cognition will be assessed in isolation (using correlations)
and in combination (using hierarchical linear regressions, adding in factors from each brain driver category
sequentially). Overall, this method shifts the focus towards a precision medicine approach—whereby examining
multiple brain drivers may allow for greater understanding of individualized risk of cognitive decline in individuals
with PD. Improving the assessment of cognitive risk could inform both clinical prognosis for patients with PD and
allow for a more targeted selection of participants into experimental trials aiming to slow impending cognitive
decline. The proposed training plan will provide the applicant with additional training experiences beyond that of
her Ph.D. program. Specific training goals include (1) gaining expertise in the methodologies measuring
neuroinflammatory and neuropathology biomarkers and their interpretation, (2) gaining proficiency with structural
magnetic resonance imaging (acquisition, processing, and interpretation) to measure white matter
hyperintensities (a metric of cerebrovascular dysfunction), (3) advancing statistical competencies and
experimental rigor, and (4) professional and career skills development. The proposed project and training goals
will be completed with the resources and support of a strong research environment, including a productive
mentoring team with specific expertise in the proposed area of study. Taken together, the proposed research
and other activities will help prepare the applicant as she transitions into a career as an independent investigator.
项目概要/摘要
帕金森病 (PD) 是美国增长最快的神经退行性疾病之一,
随着疾病的进展,认知能力下降是最令人衰弱的非运动症状之一。
每个人最终都会患上痴呆症,但是认知能力下降的轨迹因人而异。
2019 年,Ryan 同事提出了一项研究,旨在寻找即将到来的衰退的风险因素。
精确衰老模型表明,典型的与年龄相关的认知能力下降受到三大因素的影响
“大脑驱动因素”的类别:神经病理学(例如,α-突触核蛋白、tau)、神经炎症(例如,细胞因子)、
过去的研究一直在测量
尽管这些因素都属于相互关联的神经生物学因素,但这些大脑驱动因素是孤立的
因此,本研究的目的是确定帕金森病的认知变异是否可以得到更好的解释。
相对于孤立的因素,这些神经生物学危险因素的组合。
每类大脑驱动因素(即神经病理学、神经炎症、脑血管功能障碍)都会
与认知表现(特别是执行功能和记忆)独特相关,因此将每个
类别将更好地解释每个认知领域的变化。拟议的研究将检查来自某个认知领域的数据。
现有的、特征明确的无痴呆特发性帕金森病患者队列 (N=112) 以确定
大脑驱动因素与认知表现之间的横向和纵向关联(2-
为此,将单独评估大脑驱动因素与认知的关系(使用相关性)。
并结合起来(使用分层线性回归,添加每个大脑驱动类别的因素
总体而言,该方法将重点转向精准医学方法,从而进行检查。
多个大脑驱动因素可能有助于更好地了解个体认知能力下降的个体化风险
改善对帕金森病认知风险的评估可以为帕金森病患者的临床预后提供信息。
允许更有针对性地选择参与者进行实验试验,旨在减缓即将发生的认知
拟议的培训计划将为申请人提供超出现有培训经验的额外培训经验。
她的博士课程的具体培训目标包括(1)获得测量方法方面的专业知识。
神经炎症和神经病理学生物标志物及其解释,(2) 熟练掌握结构
磁共振成像(采集、处理和解释)测量白质
高信号(脑血管功能障碍的衡量标准),(3)提高统计能力和
实验培训;(4) 专业和职业技能发展。
将在强大的研究环境的资源和支持下完成,包括富有成效的研究环境
在拟议研究领域具有特定专业知识的指导团队综合起来,提出了拟议的研究。
以及其他活动将帮助申请人为过渡到独立调查员的职业生涯做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Kenney其他文献
Lauren Kenney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
- 批准号:
10641360 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别: