Solid-state nanopores and silicon nanomembranes for ultrasensitive protein biomarker detection

用于超灵敏蛋白质生物标志物检测的固态纳米孔和硅纳米膜

基本信息

  • 批准号:
    10631966
  • 负责人:
  • 金额:
    $ 41.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Abstract Proteins in serum and urine provide diagnostic indications of early cancers, traumatic brain injury, and other life threatening conditions, but are difficult to detect at ultra-low concentrations. While ultrasensitive protein detection has been achieved using digital (i.e. molecular counting) ELISA (dELISA) platforms such as Quanterix’s SiMoA, these instruments require specialized and complex optics for single molecule detection, which is difficult to miniaturize. Solid-state nanopores (ssNPs) now offer an alternative digital sensing opportunity for protein biomarkers following our invention of Controlled Dielectric Breakdown (CBD) as an inexpensive method for single nanopore fabrication. Unlike the optical readout of dELISA platforms, ssNPs can provide a completely electronic solution for low-cost, point-of-care instruments that are needed to bring ultrasensitive diagnostics to low resource settings. Our proposal brings together an accomplished team with expertise in ssNP sensors, separations, microfluidics, and molecular diagnostics to solve the remaining technical challenges for ultrasensitive ssNP-based sensing. We will establish feasibility through a head-to-head comparison to the Quanterix SiMoA. The technical challenge of signal amplification will be solved by combining a new immunoassay that transduces every target protein biomarker in serum or urine to hundreds of 50nt 100 DNA proxies coupled to 60 nm gold nanoparticles (AuNP). This signal will then be concentrated in a microfluidic platform using ultrathin nanoporous silicon nitride (NPN) membranes that have a proven capacity to capture and concentrate AuNPs up to 10,000 fold. The proxies will be released from the NPN with UV light and will rapidly hybridize with DNA nanostructures that give robust signals in a ssNP sensor positioned only a few hundred micrometers away. The combined 106- fold increase in biomarker concentration will enable the ssNP to process signals from fM concentrations of protein biomarker in minutes. This novel instrument, which we’ve termed the catch and release for proxy enhancement ssNP (CRePE-ssNP), will be validated on two clinically relevant biomarker panels of requiring increasing enhancement factors: 1) urine biomarkers that predict bladder cancer immunotherapy efficacy; and 2) biomarkers in serum used to detect brain injury. Urine biomarkers will be drawn from the CyPRIT Nomogram panel which predict bladder cancer (BC) response to an inoculation with Bacillus Calmette-Guérin (BCG). Thresholds for this panel are in the low pM/high fM range. Our more challenging application will be the low fM level detection of TBI biomarkers (UCHL1, GFAP) in serum. Performance in both studies will be benchmarked against the SiMoA HD-1Analyzer from Quanterix.
抽象的 血清和尿液中的蛋白质提供早期癌症、创伤性脑损伤和其他生命的诊断指示 威胁条件,但在超低浓度下难以检测,而超灵敏的蛋白质检测。 已通过使用数字(即分子计数)ELISA (dELISA) 平台(例如 Quanterix 的 SiMoA)实现, 这些仪器需要专门且复杂的光学器件来进行单分子检测,这很难 固态纳米孔(ssNP)现在为蛋白质提供了另一种数字传感机会。 我们发明了受控介电击穿 (CBD) 作为一种廉价的方法 与 dELISA 平台的光学读出不同,ssNP 可以提供完整的纳米孔制造。 用于低成本、现场护理仪器的电子解决方案,这些仪器需要将超灵敏的诊断带到 我们的建议汇集了一支在 ssNP 传感器方面具有专业知识的优秀团队, 分离、微流体和分子诊断,以解决剩余的技术挑战 我们将通过与基于 ssNP 的超灵敏传感进行头对头比较来确定其可行性。 Quanterix SiMoA。 信号放大的技术挑战将通过结合一种新的免疫测定来解决,该免疫测定可转导 血清或尿液中的每个目标蛋白生物标志物与数百个 50nt 100 DNA 代理耦合到 60 nm 金 然后,该信号将被集中在使用超薄纳米多孔的微流体平台中。 氮化硅 (NPN) 膜经证实能够捕获和浓缩高达 10,000 的 AuNP 代理将在紫外光的作用下从 NPN 中释放出来,并与 DNA 纳米结构快速杂交。 在仅几百微米外的 ssNP 传感器中提供强大的信号 组合的 106- 生物标志物浓度倍数增加将使 ssNP 能够处理来自 fM 蛋白质浓度的信号 这种新颖的工具可以在几分钟内完成生物标记,我们将其称为代理增强的捕获和释放。 ssNP (CRePE-ssNP),将在两个临床相关生物标志物组上进行验证,需要增加 增强因素:1)预测膀胱癌免疫治疗效果的尿液生物标志物;2) 用于检测脑损伤的血清中的生物标志物将从 CyPRIT 列线图中绘制。 预测膀胱癌 (BC) 对接种卡介苗 (BCG) 的反应的小组。 该面板的阈值处于低 pM/高 fM 范围内,我们更具挑战性的应用是低 fM。 血清中 TBI 生物标志物(UCHL1、GFAP)的水平检测将对这两项研究的表现进行基准测试。 与 Quanterix 的 SiMoA HD-1Analyzer 进行比较。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Digital immunoassay for biomarker concentration quantification using solid-state nanopores.
使用固态纳米孔进行生物标志物浓度定量的数字免疫测定。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    He, Liqun;Tessier, Daniel R;Briggs, Kyle;Tsangaris, Matthaios;Charron, Martin;McConnell, Erin M;Lomovtsev, Dmytro;Tabard
  • 通讯作者:
    Tabard
Analysis of Nanopore Data: Classification Strategies for an Unbiased Curation of Single-Molecule Events from DNA Nanostructures.
纳米孔数据分析:DNA 纳米结构单分子事件公正管理的分类策略。
  • DOI:
  • 发表时间:
    2023-07-28
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Roelen, Zachary;Briggs, Kyle;Tabard
  • 通讯作者:
    Tabard
Efficient Simulation of Arbitrary Multicomponent First-Order Binding Kinetics for Improved Assay Design and Molecular Assembly.
有效模拟任意多组分一阶结合动力学,以改进分析设计和分子组装。
  • DOI:
  • 发表时间:
    2022-04-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Briggs, Kyle;Bouhamidi, Mohamed Yassine;He, Liqun;Tabard
  • 通讯作者:
    Tabard
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JONATHAN D FLAX其他文献

JONATHAN D FLAX的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JONATHAN D FLAX', 18)}}的其他基金

Solid-state nanopores and silicon nanomembranes for ultrasensitive protein biomarker detection
用于超灵敏蛋白质生物标志物检测的固态纳米孔和硅纳米膜
  • 批准号:
    10229798
  • 财政年份:
    2021
  • 资助金额:
    $ 41.42万
  • 项目类别:
Solid-state nanopores and silicon nanomembranes for ultrasensitive protein biomarker detection
用于超灵敏蛋白质生物标志物检测的固态纳米孔和硅纳米膜
  • 批准号:
    10549401
  • 财政年份:
    2021
  • 资助金额:
    $ 41.42万
  • 项目类别:
Solid-state nanopores and silicon nanomembranes for ultrasensitive protein biomarker detection
用于超灵敏蛋白质生物标志物检测的固态纳米孔和硅纳米膜
  • 批准号:
    10427339
  • 财政年份:
    2021
  • 资助金额:
    $ 41.42万
  • 项目类别:
Nanoparticle Surveillance and Capture for Liquid Biopsy
用于液体活检的纳米颗粒监测和捕获
  • 批准号:
    10505714
  • 财政年份:
    2021
  • 资助金额:
    $ 41.42万
  • 项目类别:

相似海外基金

Impact of Body Composition and Related Inflammatory and Immune States on Prognosis of Non-Muscle Invasive Bladder Cancer
身体成分及相关炎症和免疫状态对非肌肉浸润性膀胱癌预后的影响
  • 批准号:
    10674401
  • 财政年份:
    2023
  • 资助金额:
    $ 41.42万
  • 项目类别:
An urinary drug disposing approach for treatment of bladder Cancer
一种治疗膀胱癌的泌尿药物处置方法
  • 批准号:
    10737090
  • 财政年份:
    2023
  • 资助金额:
    $ 41.42万
  • 项目类别:
The human lung and lung-draining lymph node response to Mycobacterium tuberculosis
人肺和肺引流淋巴结对结核分枝杆菌的反应
  • 批准号:
    10666017
  • 财政年份:
    2023
  • 资助金额:
    $ 41.42万
  • 项目类别:
HLA-E and NKG2A define a novel immune checkpoint axis in non-muscle-invasive bladder cancer
HLA-E 和 NKG2A 定义了非肌层浸润性膀胱癌的新型免疫检查点轴
  • 批准号:
    10587009
  • 财政年份:
    2023
  • 资助金额:
    $ 41.42万
  • 项目类别:
Identifying novel resistance mechanisms in non-muscle invasive bladder cancer treated with Bacillus Calmette-Guerin (BCG)
识别卡介苗 (BCG) 治疗的非肌层浸润性膀胱癌的新耐药机制
  • 批准号:
    10742368
  • 财政年份:
    2023
  • 资助金额:
    $ 41.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了