A ribosome interactome that regulates local translation and neural function
调节局部翻译和神经功能的核糖体相互作用组
基本信息
- 批准号:10632135
- 负责人:
- 金额:$ 19.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos Untranslated RegionsAddressAffectAxonBindingBinding ProteinsBiologicalBiotinBiotinylationBrainCell VolumesCellsCellular biologyChildhoodComplexCuesDefectDendritesDevelopmentDiseaseEmbryonic DevelopmentEndowmentGene ExpressionGenetic studyGrantHumanLabelLengthLinkLocationLong-Term PotentiationLoss of HeterozygosityMaintenanceMediatingMemoryMental DepressionMessenger RNAMorphologyMusMutationNeurodevelopmental DisorderNeuronsNeurophysiology - biologic functionOrganellesPeptide Initiation FactorsPhysiologicalProtein BiosynthesisProteinsProteomeRNA HelicaseResolutionRibosomal InteractionRibosomal ProteinsRibosomesRoleShapesSignal TransductionSpecificityStimulusStructureSubcellular SpacesSynapsesSynaptic TransmissionSynaptic plasticitySystemTechnologyTimeTrans-ActivatorsTranscriptTranslatingTranslationsWorkbrain healthexperimental studyextracellularhelicasein vivoinsightmRNA Translationneuralneurodevelopmentnew technologynoveloptogeneticspostsynapticpresynapticresponsespatiotemporaltooltool development
项目摘要
A central question in cell biology is how gene expression is spatially and temporally regulated in response to
stimuli. Neurons are particularly mystifying due to their complex morphology, wherein dendrites and axons that
comprise most of the cell volume extend great distances (>10 mm in length) from the cell body. Paradoxically,
neurons must respond in a fast and selective manner to accurately transmit synaptic signals across these
distances to neighboring cells. In vivo genetic studies have demonstrated a clear requirement for newly
synthesized proteins to drive long-term potentiation and depression, synaptic plasticity, and memory formation
Indeed, all the components necessary for translation including mRNAs, ribosomes, and initiation factors, are
localized within axons and dendrites. This raises the question: how are specific subsets of mRNAs
translationally regulated in a selective, fast, and spatially localized manner to propagate distinct signals within
neurons? Intriguingly, trans-acting factors known as ribosome-associated proteins (RAPs) have emerged as
critical players in regulating translational specificity and subcellular localization that can rapidly fine-tune
translation in response to extracellular signals. However, we lack the technologies to be able to precisely
isolate and analyze the translational machinery at discrete locations within neurons. In this grant, we will apply
new technologies to mark and characterize ribosomes in distinct subdomains of neurons for the first time. We
will also directly delineate how RAP binding to the ribosome endows greater specificity in translational control
to reflect unique cellular needs and diversity in subcellular space in neurons. In Aim1 we will develop a new
technology known as ALIBi (AviTag-specific Location-restricted Inducible Biotinylation), which enables
proximity-dependent biotin labeling for the isolation of ribosomes in a spatiotemporally targeted
manner. With this technology we will be able to identify RAPs and study localized translation at an
unprecedented subcellular resolution in a tunable and highly specific fashion. In Aim2 we will characterize a
novel RAP that encodes an ATP-dependent helicase that is present on neuronal ribosomes. Neurons translate
some of the longest transcripts in the body containing highly structured 5’UTRs that may require helicase
activity for their translation. Here, we will address the outstanding question of whether RAP binding to neural
ribosomes endows greater specificity to translational control. Together, this work will uncover the functional
consequences of RAP-ribosome interactions with respect to localized translation and neural development
utilizing new technologies that for the first time enable us to directly probe neural ribosomes and their functions
in localized translational control.
细胞生物学的一个中心问题是基因表达如何在空间和时间上调节以响应
神经元由于其复杂的形态而特别神秘,但是树突和轴突
矛盾的是,大部分细胞体积从细胞体延伸很远的距离(长度> 10毫米)。
神经元必须以快速且有选择性的方式做出反应,以准确地在这些神经元之间传递突触信号。
体内遗传学研究已经证明了对新细胞的明确要求。
合成蛋白质以驱动长时程增强和抑制、突触可塑性和记忆形成
事实上,翻译所需的所有成分,包括 mRNA、核糖体和起始因子,都是
这提出了一个问题:mRNA 的特定子集是如何定位的。
以选择性、快速和空间局部化的方式进行翻译调节,以在内部传播不同的信号
有趣的是,被称为核糖体相关蛋白(RAP)的反式作用因子已经出现
调节翻译特异性和亚细胞定位的关键参与者,可以快速微调
然而,我们缺乏能够精确翻译的技术。
在这笔资助中,我们将应用分离和分析神经元内离散位置的翻译机制。
首次使用新技术来标记和表征神经元不同子域中的核糖体。
还将直接描述 RAP 与核糖体的结合如何赋予翻译控制更大的特异性
为了反映神经元亚细胞空间的独特细胞需求和多样性,我们将在 Aim1 中开发一种新的。
称为 ALIBi(AviTag 特定位置限制诱导生物素化)的技术,该技术使
邻近依赖性生物素标记用于时空靶向分离核糖体
借助这项技术,我们将能够快速识别 RAP 并研究本地化翻译。
在 Aim2 中,我们将以可调节且高度特异性的方式获得前所未有的亚细胞分辨率。
编码存在于神经元核糖体上的 ATP 依赖性解旋酶的新型 RAP 神经元翻译。
体内一些最长的转录本包含可能需要解旋酶的高度结构化的 5’UTR
在这里,我们将解决 RAP 是否与神经结合这一悬而未决的问题。
核糖体赋予翻译控制更大的特异性,这项工作将揭示其功能。
RAP-核糖体相互作用对局部翻译和神经发育的影响
利用新技术首次使我们能够直接探测神经核糖体及其功能
在本地化翻译控制中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Barna其他文献
Maria Barna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Barna', 18)}}的其他基金
Investigating and targeting the translational landscape of DBA
调查并瞄准 DBA 的转化前景
- 批准号:
10867969 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Rapid remodeling of the translatome underlying wound healing and regeneration
伤口愈合和再生中翻译组的快速重塑
- 批准号:
10445695 - 财政年份:2022
- 资助金额:
$ 19.68万 - 项目类别:
Understanding tissue selective phenotypes in ribosomopathies with new technologies
利用新技术了解核糖体病的组织选择性表型
- 批准号:
10506560 - 财政年份:2022
- 资助金额:
$ 19.68万 - 项目类别:
Rapid remodeling of the translatome underlying wound healing and regeneration
伤口愈合和再生中翻译组的快速重塑
- 批准号:
10674724 - 财政年份:2022
- 资助金额:
$ 19.68万 - 项目类别:
A ribosome interactome that regulates local translation and neural function
调节局部翻译和神经功能的核糖体相互作用组
- 批准号:
10491525 - 财政年份:2022
- 资助金额:
$ 19.68万 - 项目类别:
Specialized Translational Control of Stem Cell Differentiation and Embryonic Development
干细胞分化和胚胎发育的专门转化控制
- 批准号:
10210834 - 财政年份:2016
- 资助金额:
$ 19.68万 - 项目类别:
Specialized Translational Control of Stem Cell Differentiation and Embryonic Development
干细胞分化和胚胎发育的专门转化控制
- 批准号:
10377513 - 财政年份:2016
- 资助金额:
$ 19.68万 - 项目类别:
5'UTR RNA Regulons in ribosome-mediated control of embryonic development
核糖体介导的胚胎发育控制中的 5UTR RNA 调节子
- 批准号:
9241435 - 财政年份:2016
- 资助金额:
$ 19.68万 - 项目类别:
Specialized Translational Control of Stem Cell Differentiation and Embryonic Development
干细胞分化和胚胎发育的专门转化控制
- 批准号:
10611400 - 财政年份:2016
- 资助金额:
$ 19.68万 - 项目类别:
5'UTR RNA Regulons in ribosome-mediated control of embryonic development
核糖体介导的胚胎发育控制中的 5UTR RNA 调节子
- 批准号:
9010546 - 财政年份:2016
- 资助金额:
$ 19.68万 - 项目类别:
相似海外基金
TNFRSF13B polymorphisms and immunity to transplantation
TNFRSF13B 多态性与移植免疫
- 批准号:
10734879 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Optimization of CRISPR genome editor and its delivery strategy for C9orf72 frontotemporal dementia
C9orf72额颞叶痴呆的CRISPR基因组编辑器优化及其递送策略
- 批准号:
10746565 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Employing viruses to unravel the functional significance of the m5C epitranscriptome
利用病毒揭示 m5C 表观转录组的功能意义
- 批准号:
10638533 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Muscle-Specific CRISPR/Cas9 Exon Skipping for Duchenne Muscular Dystrophy Therapeutics
肌肉特异性 CRISPR/Cas9 外显子跳跃用于杜氏肌营养不良疗法
- 批准号:
10679199 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别: