A Novel Genome-Wide Screen to Identify and Characterize Regulators of ALS Disease Modifier Gene Ataxin-2
一种新型全基因组筛选,用于识别和表征 ALS 疾病修饰基因 Ataxin-2 的调节因子
基本信息
- 批准号:10382981
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-03 至 2023-01-02
- 项目状态:已结题
- 来源:
- 关键词:ALS patientsAction PotentialsAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisAntisense OligonucleotidesAutophagocytosisBehaviorBiogenesisBiologicalBiological ModelsBlood - brain barrier anatomyBrainCRISPR screenCRISPR/Cas technologyCell modelCellsClinicalClinical TrialsDNA-Binding ProteinsDataDepositionDevelopmentDiseaseDoseDrosophila genusDrug TargetingEnhancersEnzymesFDA approvedFRAP1 geneFluorescence-Activated Cell SortingFutureGene TargetingGenesGeneticGoalsHealthHumanIn VitroIndividualInduced pluripotent stem cell derived neuronsInheritedKnock-outLY6E geneLeadLengthLightLongevityLysosomesMammalian CellMediatingMessenger RNAMethodsModelingMotor NeuronsMusMuscleNatureNeurodegenerative DisordersNeuronsParkinson DiseasePathogenesisPathologicPathologyPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhysiologicalProtein OverexpressionProteinsRegulationRoleSCA2 proteinSafetySignal TransductionSpinalSpinal CordSystemTestingTherapeuticTherapeutic InterventionToxic effectWritingYeastsalpha synucleinamyotrophic lateral sclerosis therapybasecohortdeletion librarydisease phenotypedisorder riskdruggable targetflygenetic approachgenetic risk factorgenome wide screengenome-widein vivoinsightknock-downlifetime riskmotor deficitmotor impairmentmouse modelmulticatalytic endopeptidase complexneuron lossnew therapeutic targetnoveloverexpressionpolyglutamineprotein aggregationprotein complexprotein degradationrisk variantscreeningsmall moleculesmall molecule inhibitorsporadic amyotrophic lateral sclerosistau Proteinstherapeutic targetvacuolar H+-ATPase
项目摘要
Project Summary / Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with an estimated lifetime risk of 1 in
400 individuals. ALS is clinically characterized by motor deficits, and pathologically by the selective loss of motor
neurons in the brain and spinal cord, as well as deposition of ubiquitinated proteinaceous aggregates of TDP-
43. Despite the presence of TDP-43 pathology in nearly all (~97%) brains of ALS patients, the genetic
underpinnings of the disease is highly heterogeneous, with ~90% being considered to be ‘sporadic,’ or having
no known genetic cause. The variable nature of the underlying causes has made treatment of the disease
historically difficult due to a lack of clear therapeutic targets. In the past decade, Ataxin-2 (ATXN2) has emerged
as a promising therapeutic target for ALS, as a potent genetic modifier of TDP-43 aggregation and toxicity across
multiple models of TDP-43 proteinopathy. Most excitingly, decreasing ATXN2 levels using anti-sense
oligonucleotides (ASOs) in a mouse model of TDP-43 overexpression led to a marked rescue of motor
impairments and dramatic extension of lifespan. Despite the promise of ASOs, having an orthogonal method to
reduce ATXN2 levels—such as a small molecule drug that can target one of its regulators—could have immense
practical benefit in the clinical context. Moreover, little remains known on how ATXN2 is normally regulated, as
well as its true role in disease. To gain mechanistic insight as well as to identify additional therapeutic targets, I
developed a novel FACS (fluorescence activated cell sorting)-based CRISPR/Cas9 genome-wide knockout
screening strategy. The idea was to identify suppressors and enhancers of ATXN2 protein levels in a reliable
and efficient way; genes that decrease ATXN2 levels upon knockout could serve as novel therapeutic targets for
ALS, while those that increase ATXN2 levels upon knockout could potentially contribute to heightened risk for
the disease. The screen yielded a multitude of promising hits, with many acting in same biological pathways, or
sometimes encoding subunits of one protein complex. One example of this is the lysosomal vacuolar ATPase
(v-ATPase), for which genes encoding nearly every subunit were found to be significant suppressors of ATXN2
protein levels in my screens. In addition to validating hits from the initial screens across multiple disease relevant
systems—such as in mouse primary neurons and human iPSC-derived neurons—I will expand the analysis to
delve deeper into the mechanism of how the v-ATPase is regulating ATXN2 protein levels. Moreover, given that
several FDA-approved small molecule drugs are available that inhibit v-ATPase subunits, I will test their safety
and efficacy in reducing ATXN2 levels and rescuing disease phenotypes in a mouse model of ALS in vivo. If this
approach is successful, there are a multitude of exciting possibilities for this screening platform and overall target
discovery approach that I believe could help to uncover regulators of many other neurodegenerative diseases
genes (e.g., tau and Ab in FTD and Alzheimer’s Disease, a-synuclein in Parkinson’s Disease) to empower the
discovery of novel therapeutic targets in contexts not limited to ALS.
项目概要/摘要
肌萎缩侧索硬化症 (ALS) 是一种致命的神经退行性疾病,估计终生风险为 1 分之一
400 名 ALS 患者的临床特征为运动缺陷,病理特征为选择性运动丧失。
大脑和脊髓中的神经元,以及 TDP- 泛素化蛋白质聚集体的沉积
43. 尽管几乎所有 (~97%) ALS 患者的大脑中都存在 TDP-43 病理,但遗传性
该疾病的基础具有高度异质性,约 90% 被认为是“散发性”的,或者具有
没有已知的遗传原因,导致该疾病的治疗方法多种多样。
由于缺乏明确的治疗靶点,历史上一直很困难,在过去的十年中,Ataxin-2 (ATXN2) 出现了。
作为 ALS 有前途的治疗靶点,作为 TDP-43 聚集和毒性的有效遗传修饰剂
TDP-43 蛋白病的多种模型最令人兴奋的是,使用反义降低 ATXN2 水平。
TDP-43 过表达小鼠模型中的寡核苷酸 (ASO) 显着挽救了运动能力
尽管 ASO 有希望,但有一种正交方法可以减少损伤并显着延长寿命。
降低 ATXN2 水平(例如可以针对其调节因子之一的小分子药物)可能会产生巨大的影响
此外,对于 ATXN2 的正常调节方式仍知之甚少。
及其在疾病中的真正作用,为了获得机制洞察并确定其他治疗靶点,我
开发了一种基于 CRISPR/Cas9 的新型 FACS(荧光激活细胞分选)全基因组敲除
筛选策略是确定可靠的 ATXN2 蛋白水平的抑制子和增强子。
敲除后降低 ATXN2 水平的基因可以作为新的治疗靶点
ALS,而那些在敲除后增加 ATXN2 水平的药物可能会导致呼吸分析仪风险
该疾病的筛选产生了许多有希望的成果,其中许多作用于相同的生物学途径,或者
有时编码一种蛋白质复合物的亚基,其中一个例子是溶酶体液泡 ATP 酶。
(v-ATPase),编码几乎每个亚基的基因被发现是 ATXN2 的显着抑制因子
除了验证多种疾病相关的初始屏幕的命中率之外,我的屏幕中的蛋白质水平。
系统——例如小鼠原代神经元和人类 iPSC 衍生神经元——我将把分析扩展到
此外,考虑到 v-ATPase 如何调节 ATXN2 蛋白水平的机制。
有几种 FDA 批准的小分子药物可以抑制 v-ATPase 亚基,我将测试它们的安全性
以及在体内 ALS 小鼠模型中降低 ATXN2 水平和挽救疾病表型的功效。
方法是成功的,这个筛选平台和总体目标有许多令人兴奋的可能性
我相信这种发现方法可以帮助揭示许多其他神经退行性疾病的调节因子
基因(例如 FTD 和阿尔茨海默病中的 tau 和 Ab、帕金森病中的 a-突触核蛋白)
发现新的治疗靶点,不仅限于 ALS。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARAM KIM其他文献
GARAM KIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
Voltage Imaging of Astrocyte-Neuron Interactions
星形胶质细胞-神经元相互作用的电压成像
- 批准号:
10711423 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
The Effects of Aging and Microglia Dysfunction on Remyelination
衰老和小胶质细胞功能障碍对髓鞘再生的影响
- 批准号:
10603320 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Comparison of direct and indirect magnetic resonance imaging of myelin in Alzheimer's disease
阿尔茨海默病髓磷脂直接和间接磁共振成像的比较
- 批准号:
10680319 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Creating an sxRNA Organoid Product for Advancing the Study, Prevention and Treatment of Alzheimer's disease (AD) and Alzheimer's-disease-related dementias (ADRD)
创建 sxRNA 类器官产品以推进阿尔茨海默病 (AD) 和阿尔茨海默病相关痴呆 (ADRD) 的研究、预防和治疗
- 批准号:
10765970 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: