Structural determinants of lipid modulation of ligand-gated ion channels
配体门控离子通道脂质调节的结构决定因素
基本信息
- 批准号:10471051
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffinityAllopregnanoloneAnestheticsAntidepressive AgentsAntiepileptic AgentsBindingBinding SitesBiochemicalBiological ModelsChargeChemicalsChemistryDataDependenceDiseaseEnvironmentEpilepsyErwiniaFatty AcidsFoundationsFunctional disorderGasesGeneral anesthetic drugsGoalsHeadHomologous GeneHydrophobicityIon Channel GatingLabelLearningLengthLigandsLightLipid BindingLipidsLiposomesMass Spectrum AnalysisMeasuresMediatingMembraneModificationMolecularMutagenesisNeurodegenerative DisordersPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhasePhosphatidylglycerolsPhospholipid InteractionPhospholipidsPhotoaffinity LabelsPlayPositioning AttributeProteinsReagentResearchResearch PersonnelResearch Project GrantsRoleSiteSpecificitySterolsStructural ModelsStructureSynaptic TransmissionSystemTailTechniquesTestingWorkaddictionanalogbiophysical techniquesdesensitizationdesignfatty acid analogfield studyion mobilitymethanethiosulfonatemutantneurosteroidsnovelpatch clampreceptorreconstitutionsmall moleculesmall molecule therapeuticsstoichiometry
项目摘要
PROJECY SUMMARY/ ABSTRACT
Pentameric ligand-gated ion channels (pLGICs) play a primary role in synaptic transmission, and are modulated
by a variety of endogenous molecules, including phospholipids, sterols, and fatty acids. pLGICs are also
modulated by small molecule therapeutics (e.g. anesthetics and anti-epileptics). The structural mechanism by
which phospholipids modulate pLGICs is poorly understood. Anionic phospholipids are allosteric modulators of
mammalian pLGICs, and structural studies suggest that phospholipid binding sites overlaps with binding sites of
small molecules such as neuroteroids. The goal of this project is to investigate the hypothesis that lipids and
certain allosteric modulating drugs bind to specific sites on pLGICs, and that these drugs induce their modulatory
effect through a positive, or negative, effect on lipid binding. To accomplish this goal, I will use a combination of
cutting edge techniques, including native mass spectrometry (MS), covalent chemical modification, and patch-
clamp recordings of giant liposomes of defined lipid composition. To apply these techniques, I will use the
prototypical prokaryotic pLGIC, Erwinia ligand-gated ion channel (ELIC), as a tractable model system. ELIC is
an ideal system for MS and readily permits expression and purification of mutant proteins for biochemical and
reconstitution studies. Work in the Cheng lab has measured direct binding of phospholipids to ELIC by MS, and
demonstrated that specific binding of anionic phospholipids reduces desensitization in ELIC. Building upon this
work, this research project will address two aims. The first is to determine the specificity and sites of phospholipid
binding that mediate their modulatory effects on ELIC. I hypothesize that phospholipid head group charge
determines the lipid binding affinity to ELIC, but that the structure of the hydrophobic tail (e.g. length and position
of unsaturations) is the critical determinant of the native modulatory effect. Phospholipid binding affinity and
stoichiometry will be determined by MS. The functionally-relevant binding sites for phospholipids will be
determined using mutagenesis and chemical modification with methanethiosulfonate (MTS) reagents. The second
aim is to elucidate the interaction between phospholipids and allosterically modulating drugs in relation to ELIC
binding and modulation. Within this aim I will determine the sites of binding of allopregnanalone (alloP) in ELIC
using photo-affinity labels, and then examine the effect this labeling (or non-covalent binding in MS) has on
phospholipid binding. Preliminary results indicate that alloP enhances ELIC desensitization, and I hypothesize
that alloP induces its pharmacologic effect by competing for binding of sites otherwise occupied by
phospholipids. Functional studies in liposomes will determine whether alloP competitively or non-competitively
antagonize anionic phospholipid effect. This work will be foundational in understanding the modulation of
pLGICs by relevant small molecules. The experimental framework developed within this proposal will be critical
in understanding the mechanism of channel modulation by other bioactive lipids and small molecule modulators.
项目概要/摘要
五聚体配体门控离子通道 (pLGIC) 在突触传递中起主要作用,并受到调节
由多种内源性分子,包括磷脂、甾醇和脂肪酸。 pLGIC 还
由小分子疗法(例如麻醉剂和抗癫痫药)调节。其结构机理为
对于哪些磷脂调节 pLGIC 知之甚少。阴离子磷脂是变构调节剂
哺乳动物 pLGIC,结构研究表明磷脂结合位点与 pLGIC 的结合位点重叠
小分子,例如神经类固醇。该项目的目标是研究脂质和
某些变构调节药物与 pLGIC 上的特定位点结合,并且这些药物诱导其调节
通过对脂质结合产生积极或消极的影响。为了实现这个目标,我将结合使用
尖端技术,包括天然质谱 (MS)、共价化学修饰和补丁技术
确定脂质成分的巨型脂质体的钳记录。为了应用这些技术,我将使用
原型原核 pLGIC,欧文氏菌配体门控离子通道 (ELIC),作为易于处理的模型系统。 ELIC 是
一个理想的 MS 系统,可以轻松表达和纯化突变蛋白,用于生化和
重组研究。 Cheng 实验室的工作通过 MS 测量了磷脂与 ELIC 的直接结合,并且
证明阴离子磷脂的特异性结合减少了 ELIC 中的脱敏。在此基础上
工作中,该研究项目将实现两个目标。首先是确定磷脂的特异性和位点
介导其对 ELIC 的调节作用的结合。我假设磷脂头基带电荷
决定了脂质与 ELIC 的结合亲和力,但疏水尾部的结构(例如长度和位置)
不饱和度)是天然调节效应的关键决定因素。磷脂结合亲和力和
化学计量将通过MS确定。磷脂的功能相关结合位点是
使用甲硫代磺酸盐 (MTS) 试剂进行诱变和化学修饰来确定。第二个
目的是阐明磷脂和与 ELIC 相关的变构调节药物之间的相互作用
结合和调制。在此目标下,我将确定 ELIC 中异孕酮 (alloP) 的结合位点
使用光亲和标记,然后检查该标记(或 MS 中的非共价结合)对
磷脂结合。初步结果表明 alloP 增强 ELIC 脱敏作用,我假设
alloP 通过竞争结合位点来诱导其药理作用,否则该位点被
磷脂。脂质体的功能研究将决定 alloP 是竞争性的还是非竞争性的
拮抗阴离子磷脂作用。这项工作将为理解调制奠定基础
pLGIC 由相关小分子组成。该提案中开发的实验框架至关重要
了解其他生物活性脂质和小分子调节剂的通道调节机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John T Petroff 其他文献
John T Petroff 的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John T Petroff ', 18)}}的其他基金
Structural determinants of lipid modulation of ligand-gated ion channels
配体门控离子通道脂质调节的结构决定因素
- 批准号:
10285984 - 财政年份:2020
- 资助金额:
$ 0.25万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
- 批准号:
10735130 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别: