A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
基本信息
- 批准号:10473273
- 负责人:
- 金额:$ 135.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAbateAddressAdhesionsAlgorithmsAnatomic SurfaceAnatomyBiochemicalBiophysicsBioreactorsClinicalComputer AssistedCosmeticsCuesCustomDepositionEngineeringEnsureFailureFeedbackGeometryGoalsHuman bodyIn SituIn VitroInjuryInstitutesIntuitionLeadMonitorMotionMuscleMusculoskeletalNatural regenerationOperative Surgical ProceduresOrganPatientsPrintingProceduresProcessResolutionRoboticsSafetySignal TransductionSurfaceSurgeonSurgical complicationSurgical suturesSystemTimeTissue EngineeringTissue constructsTissuesbasebioinkbioprintingdesignfunctional restorationhuman tissuehydrogel scaffoldimplantationimprovedinjuredinnovationinstrumentloss of functionmultidisciplinarymuscle engineeringmusculoskeletal injurynovelpain reductionrestorationrobotic systemsuccesstissue regenerationvolumetric muscle losswound
项目摘要
Summary/Abstract:
Our long-goal is to develop an unprecedented semi-autonomous surgeon-in-the-loop surgical robotic
system and complementary computer-assisted algorithms to enable an intuitive in situ robotic
bioprinting of human tissues and organs. More specifically, using this extrusion-based bioprinting system, a
surgeon can (i) first utilize a high-resolution three-dimensional (3D) point cloud camera to plan an arbitrary spatial
printing geometry on the target anatomical surface, (ii) co-operate with a robotic system to manipulate a custom-
designed bioprinting instrument to precisely follow the planned printing geometry, and (iii) perform an intuitive
and precise deposition of engineered bioinks to make tissue constructs on the target anatomical surface, while
(iv) directly control and monitor the printing process to ensure the safety and success of the procedure. The
focus of this proposal is simultaneous functional and cosmetic restoration of large volumetric muscle
loss (VML) injuries by utilizing a novel engineered bioink- developed by our collaborators at the Terasaki
Institute of Biomedical Innovation, a complementary robotic bioprinting system, and intuitive computer-
assisted algorithms.
Severe musculoskeletal injuries can lead to VML, where extensive musculoskeletal damage and tissue loss
result in permanent loss of function. In small-scale injuries or strains, muscle is capable of endogenous
regeneration and complete functional restoration. However, this ability is abated in VML, where the native
biophysical and biochemical signaling cues are no longer present to facilitate tissue regeneration. Current state-
of-the-art in vitro tissue engineering VML treatment procedures suffer from various issues including (i) prolonged
culturing period in bioreactors demanding functionality enhancement prior to implantation in the body; (ii)
adhesion failure of in vitro 3D printed hydrogel scaffolds to the remnant muscle, whether injected, sutured, or
placed into the wound; and (iii) inability to be printed precisely in irregular curved 3D surfaces of large VML
injuries.
It is our central hypothesis that the proposed semi-autonomous robotic bioprinting system can collectively
address the mentioned limitations of the current state-of-the-art solutions by (i) reducing complexity, surgical
time, and complications associated with current VML treatments, (ii) immediately delivering and in situ printing
of appropriate bioinks to the target anatomy and utilizing the human body as a natural bioreactor to induce tissue
maturation and function, and (iii) providing real-time feedback on the 3D bioprinted constructs as well as the
surgeon’s and patient’s motions to ensure precision of the bioprinting procedure for simultaneous functional and
cosmetic restoration of the injured muscle. The proposed project is multidisciplinary and bridges the current gap
between the robotic surgery, tissue engineering, and bioprinting fields. The contribution is significant, high
impact, and innovative and can revolutionize the current clinical paradigm.
摘要/摘要:
我们的长期目标是开发一种前所未有的半自主外科医生循环手术机器人
系统和补充计算机辅助算法,以实现直观的原位机器人
更具体地说,使用这种基于挤出的生物打印系统,可以对人体组织和器官进行生物打印。
外科医生可以 (i) 首先利用高分辨率三维 (3D) 点云相机来规划任意空间
在目标解剖表面上打印几何形状,(ii)与机器人系统合作来操纵定制的
设计的生物打印仪器精确遵循计划的打印几何形状,并且(iii)执行直观的
以及工程生物墨水的精确沉积,以在目标解剖表面上构建组织结构,同时
(iv) 直接控制和监控打印过程,以确保过程的安全和成功。
该提案的重点是大体积肌肉的同时功能和美容修复
利用我们在 Terasaki 的合作者开发的新型工程生物墨水来损失 (VML) 损伤
生物医学创新研究所,一个互补的机器人生物打印系统和直观的计算机
辅助算法。
严重的肌肉骨骼损伤可导致 VML,其中广泛的肌肉骨骼损伤和组织损失
在小范围的损伤或拉伤中,肌肉能够发生内源性功能丧失。
然而,这种能力在 VML 中减弱,其中本机
生物物理和生化信号线索不再存在以促进组织再生。
最先进的体外组织工程 VML 治疗程序存在各种问题,包括 (i)
(ii) 在植入体内之前需要增强功能的生物反应器中的培养期;
体外 3D 打印水凝胶支架与残余肌肉的粘附失败,无论是注射、缝合还是
(iii) 无法在大型 VML 的不规则弯曲 3D 表面上进行精确打印
受伤。
我们的中心假设是所提出的半自主机器人生物打印系统可以共同
通过以下方式解决当前最先进解决方案的上述局限性:(i)降低复杂性、手术
时间以及与当前 VML 治疗相关的并发症,(ii) 立即输送和原位打印
将适当的生物墨水应用于目标解剖结构并利用人体作为天然生物反应器来诱导组织
成熟和功能,以及 (iii) 提供有关 3D 生物打印结构以及
外科医生和患者的动作,以确保生物打印过程的精确性,同时实现功能和功能
拟议的项目是跨学科的,旨在弥补目前的差距。
机器人手术、组织工程和生物打印领域之间的贡献是显着的、高的。
影响力和创新性,可以彻底改变当前的临床范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farshid Alambeigi其他文献
Farshid Alambeigi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farshid Alambeigi', 18)}}的其他基金
A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
- 批准号:
10742476 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10374927 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10218941 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10541197 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Printed Configurable and Themoresponsive Intracortical Electrode Array Platform
3D 打印可配置和热响应皮质内电极阵列平台
- 批准号:
10883867 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
Bionanomatrix coating to enhance antibacterial effects while reducing inflammation of knee joint implants
生物纳米基质涂层可增强抗菌效果,同时减少膝关节植入物的炎症
- 批准号:
10822220 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
LIMBER UniLeg: A digital and additive manufacturing approach for accessible prosthetic care.
LIMBER UniLeg:一种数字化增材制造方法,可实现无障碍的假肢护理。
- 批准号:
10761671 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
Low-Cost, Single-Use Trans-Nasal Cryotherapy Device for Low-Resource Settings
适用于资源匮乏环境的低成本、一次性经鼻冷冻治疗设备
- 批准号:
10761295 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别: