Optimization of CaMPARI for large-scale, cellular-resolution activity recording in freely-moving mice
CaMPARI 的优化,用于自由移动小鼠的大规模细胞分辨率活动记录
基本信息
- 批准号:10472700
- 负责人:
- 金额:$ 64.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAreaBehaviorBehavior assessmentBenchmarkingBindingBiological AssayBrainBrain regionCalciumCalcium ionCellsCharacteristicsColorDataDetectionDevelopmentDevicesDorsalEnsureEnvironmentEquipmentFluorescenceFutureGenesGenetic IdentityGoalsHeadHippocampusImmunohistochemistryImplantIn VitroLabelLibrariesLightLightingLinkMapsMeasurementMethodsMicroscopeMicroscopyMonitorMovementMusMutateMutationNeuronsNoiseOpticsPathologyPatternPerformancePopulationPositioning AttributeProcessPropertyProtein EngineeringProteinsResearchResolutionSamplingSignal TransductionStep TestsSurfaceSystemTechniquesTechnologyTestingTissuesVariantViolaViral VectorVisual Cortexadvanced systemage relatedbehavior testbehavioral studycell typecognitive testingcortex mappingdetection sensitivityexperienceexperimental studyflexibilityimaging systemimplantable deviceimprovedin vitro Assayin vitro testingin vivoin vivo evaluationinterestmillimeterminiaturizeneural circuitnovel strategiesoptical imagingoptogeneticspredictive testprotein expressionprotein purificationresponsesample fixationscreeningsensorsingle cell sequencingthree photon microscopytranslational neurosciencetwo-photon
项目摘要
Project Summary
The goal of this proposed research is to optimize a dual-use calcium ion sensor for recording single-cell activity
from the entire dorsal cortex or hippocampus of freely-moving mice. It is widely accepted that optical imaging
with genetically-encoded fluorescent calcium sensors is currently the only method to obtain measurements of
genetically-identified neuronal populations with dense sampling. Over the past several years, the recording
capabilities of two-photon microscopes have been improved to record from millimeter-scale tissue, and new
miniaturized microscopes have been developed to record from moving mice. However, most behaviors arise
from collective interactions between neurons from multiple brain areas, which cannot be simultaneously
monitored with these systems. Therefore, there is a clear need to develop a new approach to directly monitor
the synchronized activity of distributed neural circuits. CaMPARI is a unique calcium sensor that can detect
activity in two calcium-dependent ways: 1) permanent color change (green to red) upon illumination with violet
light, a process known as photoconversion, and 2) dynamic changes in fluorescence intensity. Our data show
that CaMPARI allows recording of brain activity from freely-behaving mice, without using microscope objectives
or implanted devices. Moreover, natural degradation of the red CaMPARI protein enables multiple longitudinal
measurements. However, previous attempts to improve CaMPARI using in vitro assays reduced some of its in
vivo properties, which resulted in low dynamic recording sensitivity and a low photoconversion rate that requires
long illumination times to accumulate a sufficient amount of red protein. Therefore, the project goal is to optimize
CaMPARI to allow sensitive recording of cellular-resolution, cortex-wide activity snapshots in freely-moving mice,
followed by subsequent dynamic recording from the same mouse using two- and three-photon microscopy. To
optimize CaMPARI’s performance, we will combine in vitro testing in purified protein, HEK cells, and neurons,
and the most predictive assay: large-scale in vivo screening of ~30-fold more constructs than previous studies.
Aim 1 will focus on enhancing CaMPARI’s photoconversion efficiency to facilitate large-scale recordings in
freely-moving mice. Aim 2 will focus on improving CaMPARI’s dynamic recording properties and sensitivity. In
Aim 3, we will combine beneficial mutations from Aims 1-2 to generate a new CaMPARI with optimized
photoconversion and dynamic recording capabilities. Our proof-of-concept experiments will demonstrate multi-
regional cortical mapping during a battery of behavioral and cognitive tests to detect cellular-resolution changes
in cortex-wide activity patterns. This optimized CAMPARI is expected to facilitate new hypothesis-driven studies
by providing volumetric, multi-regional brain activity data of genetically-targeted neurons during cognitive and
behavioral testing of freely-moving mice, enabling studies that involve both head-fixation and free movement in
the same mice, and to utilize complementary techniques like optogenetic stimulation and single-cell sequencing
methods to enable studying the properties of active (red-labeled) cells during behavioral studies.
项目概要
这项研究的目标是优化用于记录单细胞活动的两用钙离子传感器
来自自由活动小鼠的整个背侧皮层或海马体的光学成像已被广泛接受。
使用基因编码荧光钙传感器是目前获得测量值的唯一方法
在过去的几年中,通过密集采样进行了基因鉴定的神经群体的记录。
双光子显微镜的能力已得到改进,可以记录毫米级组织,并且新的
微型显微镜已经被开发出来来记录移动的小鼠,然而,大多数行为都会发生。
来自多个大脑区域的神经元之间的集体相互作用,这些相互作用不能同时进行
因此,显然需要开发一种新的方法来直接监控。
CaMPARI 是一种独特的钙传感器,可以检测分布式神经回路的同步活动。
以两种钙依赖性方式发挥活性:1) 在紫罗兰色照射下发生永久性颜色变化(绿色到红色)
光,一个称为光转换的过程,以及 2)我们的数据显示荧光强度的动态变化。
CaMPARI 可以在不使用显微镜物镜的情况下记录自由行为小鼠的大脑活动
此外,红色 CaMPARI 蛋白的自然降解能够实现多重纵向。
然而,之前使用体外测定改进 CaMPARI 的尝试减少了一些结果。
体内特性,导致动态记录灵敏度低,光转换率低,需要
较长的光照时间才能积累足够量的红色蛋白质因此,该项目的目标是优化。
CaMPARI 允许在自由移动的小鼠中灵敏地记录细胞分辨率、皮层范围的活动快照,
随后使用双光子和三光子显微镜对同一只小鼠进行后续动态记录。
优化 CaMPARI 的性能,我们将结合纯化蛋白、HEK 细胞和神经元的体外测试,
最具预测性的测定:大规模体内筛选比以前的研究多约 30 倍的构建体。
目标 1 将重点提高 CaMPARI 的光转换效率,以促进大规模记录
Aim 2 将专注于提高 CaMPARI 的动态记录特性和灵敏度。
目标 3,我们将结合目标 1-2 中的有益突变,生成经过优化的新 CaMPARI
我们的概念验证实验将展示多种光转换和动态记录功能。
在一系列行为和认知测试中绘制区域皮质图,以检测细胞分辨率的变化
这种优化的 CAMPARI 有望促进新的假设驱动的研究。
通过提供认知和认知过程中基因靶向神经元的体积、多区域大脑活动数据
对自由移动的小鼠进行行为测试,从而能够进行涉及头部固定和自由移动的研究
相同的小鼠,并利用光遗传学刺激和单细胞测序等互补技术
在行为研究期间研究活性(红色标记)细胞特性的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert E. Campbell其他文献
A blue-shifted genetically encoded Ca2+ indicator with enhanced two-photon absorption
具有增强双光子吸收能力的蓝移基因编码 Ca2 指示剂
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Abhi Aggarwal;Smrithi Sunil;Imane Bendifallah;Michael Moon;Mikhail Drobizhev;Landon Zarowny;Jihong Zheng;Sheng;Alexander W. Lohman;Alison G Tebo;Valentina Emiliani;Kaspar Podgorski;Yi Shen;Robert E. Campbell - 通讯作者:
Robert E. Campbell
Engineering new protein-based biosensors to illuminate signalling and metabolism in the brain
设计新的基于蛋白质的生物传感器来阐明大脑中的信号传导和新陈代谢
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Robert E. Campbell - 通讯作者:
Robert E. Campbell
Chemi-genetic indicators based on synthetic chelators and green fluorescent protein”, Poster and short talk
基于合成螯合剂和绿色荧光蛋白的化学遗传指示剂”,海报和简短的谈话
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Robert E. Campbell - 通讯作者:
Robert E. Campbell
An Experimental Infection Model in Sheep and Goats to Evaluate Salmonella Colonization in Deep Tissue Lymph Nodes and after Carcass Vascular Rinsing with Bacteriophages in Goats.
绵羊和山羊的实验感染模型,用于评估山羊深部组织淋巴结和胴体血管用噬菌体冲洗后沙门氏菌的定植。
- DOI:
10.1016/j.jfp.2024.100312 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:2
- 作者:
Koeun Hwang;Serhat Al;Robert E. Campbell;Kathleen Glass;Kurt D. Vogel;J. R. Claus - 通讯作者:
J. R. Claus
Engineering protein-based biosensors for fluorescence imaging of cell signalling and metabolism
工程化基于蛋白质的生物传感器,用于细胞信号传导和代谢的荧光成像
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Robert E. Campbell - 通讯作者:
Robert E. Campbell
Robert E. Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert E. Campbell', 18)}}的其他基金
High-Resolution Bidirectional Optical-Acoustic Mesoscopic Neural Interface for Image-Guided Neuromodulation in Behaving Animals - RF1 Admin Supplement
用于行为动物图像引导神经调节的高分辨率双向光声介观神经接口 - RF1 管理补充
- 批准号:
10712937 - 财政年份:2023
- 资助金额:
$ 64.81万 - 项目类别:
High-resolution bidirectional optical-acoustic mesoscopic neural interface for image-guided neuromodulation in behaving animals
用于行为动物图像引导神经调节的高分辨率双向光声介观神经接口
- 批准号:
10407380 - 财政年份:2022
- 资助金额:
$ 64.81万 - 项目类别:
Optimization of CaMPARI for large-scale, cellular-resolution activity recording in freely-moving mice
CaMPARI 的优化,用于自由移动小鼠的大规模细胞分辨率活动记录
- 批准号:
10293936 - 财政年份:2021
- 资助金额:
$ 64.81万 - 项目类别:
Northern Lights collaboration for better 2-photon probes
北极光合作打造更好的 2 光子探测器
- 批准号:
9336980 - 财政年份:2015
- 资助金额:
$ 64.81万 - 项目类别:
相似国自然基金
农产品出口区域化管理对企业和农户的行为决策及经济绩效影响研究
- 批准号:72373067
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
区域压缩对非线性噪声驱动的随机偏微分方程动力学行为影响的研究
- 批准号:12371178
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
面向廊道式TOD(C-TOD)的巨型城市区域轨道交通对居民出行行为时空特征的影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市大型医院周边区域公共服务设施布局及其使用者行为和满意度的影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时间变区域上三类发展方程解的长时间动力学行为研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Domain- and protein-selective BET mechanisms in cocaine-seeking behaviors
可卡因寻求行为中的结构域和蛋白质选择性 BET 机制
- 批准号:
10714343 - 财政年份:2023
- 资助金额:
$ 64.81万 - 项目类别:
Mapping brain-wide opioid actions by profiling neuronal activities and in vivo cellular target engagement
通过分析神经元活动和体内细胞靶标参与来绘制全脑阿片类药物作用
- 批准号:
10775623 - 财政年份:2023
- 资助金额:
$ 64.81万 - 项目类别:
Role for novel ventral tegmental area neuromedin S neurons in morphine responses
新型腹侧被盖区神经调节素 S 神经元在吗啡反应中的作用
- 批准号:
10739543 - 财政年份:2023
- 资助金额:
$ 64.81万 - 项目类别:
Planning Study for the Development of Sigma 2 ligands as Analgesics
Sigma 2 配体镇痛药开发规划研究
- 批准号:
10641500 - 财政年份:2023
- 资助金额:
$ 64.81万 - 项目类别: